Ngân hàng bài tập

Bài tập tương tự

A

Số phức liên hợp của số phức \(z=(1+i)^{15}\) là

\(\overline{z}=128+128i\)
\(\overline{z}=128-128i\)
\(\overline{z}=-1\)
\(\overline{z}=-128-128i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là

\(a^2+b^2\) và \(2a^2b^2\)
\(a+b\) và \(a^2b^2\)
\(a^2-b^2\) và \(2ab\)
\(a-b\) và \(ab\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z|=2\) và \(\left|z^2+1\right|=4\). Tính \(\left|z+\overline{z}\right|+\left|z-\overline{z}\right|\).

\(3+\sqrt{7}\)
\(3+2\sqrt{2}\)
\(7+\sqrt{3}\)
\(16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(x,\,y\) là các số thực. Số phức \(z=i\left(1+xi+y+2i\right)\) bằng \(0\) khi

\(x=-1;\,y=-2\)
\(x=0;\,y=0\)
\(x=-2;\,y=-1\)
\(x=2;\,y=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho số phức \(z=1-\mathrm{i}\). Biểu diễn số phức \(z^2\) là điểm

\(N(-2;0)\)
\(Q(0;-2)\)
\(P(2;0)\)
\(M(1;2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z=2+\mathrm{i}\). Tính môđun của số phức \(w=z^2-1\).

\(|w|=2\sqrt{5}\)
\(|w|=\sqrt{5}\)
\(|w|=5\sqrt{5}\)
\(|w|=20\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(z_1,\,z_2\) là hai số phức tùy ý. Khẳng định nào dưới đây sai?

\(z\cdot\overline{z}=|z|^2\)
\(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\)
\(\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}\)
\(\left|z_1\cdot z_2\right|=\left|z_1\right|\cdot\left|z_2\right|\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị của biểu thức \(z=(1+\mathrm{i})^2\) là

\(2\mathrm{i}\)
\(-\mathrm{i}\)
\(-2\mathrm{i}\)
\(\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tổng phần thực và phần ảo của số phức \(z=(1+\mathrm{i})^2-(3+3\mathrm{i})\) bằng

\(\sqrt{10}\)
\(-4\)
\(4\)
\(-3-\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu số phức \(z\) thỏa mãn \(z^2+|z|=0\)?

\(1\)
\(4\)
\(2\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Nghịch đảo của số phức \(z=(1-2\mathrm{i})^2\) có môđun bằng

\(\dfrac{1}{\sqrt{5}}\)
\(\dfrac{1}{25}\)
\(\sqrt{5}\)
\(\dfrac{1}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Phần thực của số phức \(z=(a+\mathrm{i})(1-\mathrm{i})\) là

\(1-a\)
\(a-1\)
\(a+1\)
\(a^2+1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm hai số thực \(x,\,y\) thỏa mãn $$(2x-3y\mathrm{i})+(1-3\mathrm{i})=-1+6\mathrm{i}$$với \(\mathrm{i}\) là đơn vị ảo.

\(\begin{cases}x=1\\ y=-3\end{cases}\)
\(\begin{cases}x=-1\\ y=-3\end{cases}\)
\(\begin{cases}x=-1\\ y=-1\end{cases}\)
\(\begin{cases}x=1\\ y=-1\end{cases}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm môđun của số phức \(z=(-6+8\mathrm{i})^2\).

\(|z|=4\sqrt{527}\)
\(|z|=2\sqrt{7}\)
\(|z|=100\)
\(|z|=10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính môđun của số phức $$z=(2-\mathrm{i})(1+\mathrm{i})^2+1$$

\(|z|=4\)
\(|z|=5\)
\(|z|=2\sqrt{5}\)
\(|z|=25\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các số thực \(a,\,b\) thỏa mãn $$2a+(b+\mathrm{i})\mathrm{i}=1+2\mathrm{i}$$với \(\mathrm{i}\) là đơn vị ảo.

\(a=0,\;b=2\)
\(a=\dfrac{1}{2},\;b=1\)
\(a=0,\;b=1\)
\(a=1,\;b=2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm phần ảo của số phức \(z=(a+b\mathrm{i})(1-2\mathrm{i})\) với \(a,\,b\in\mathbb{R}\).

\(2a+b\)
\(2a-b\)
\(a+2b\)
\(b-2a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm số phức liên hợp của số phức $$z=1-3\mathrm{i}+(1-\mathrm{i})^2$$

\(\overline{z}=-1-5\mathrm{i}\)
\(\overline{z}=1-5\mathrm{i}\)
\(\overline{z}=1+5\mathrm{i}\)
\(\overline{z}=5-\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trên tập số phức, xét phương trình $z^2+az+b=0$ $(a,b\in\mathbb{R})$. Có bao nhiêu cặp số $(a,b)$ để phương trình đó có hai nghiệm phân biệt $z_1,\,z_2$ thỏa mãn $\big|z_1-2\big|=2$ và $\big|z_2+1-4i\big|=4$?

$2$
$3$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức $z_1=2-i$ và $z_2=1+3i$. Phần thực của số phức $z_1-z_2$ bằng

$3$
$-4$
$1$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự