Ngân hàng bài tập

Bài tập tương tự

A

Trong mặt phẳng $Oxy$, biết rằng tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-2+4i\right|=5$ là một đường tròn. Tọa độ tâm của đường tròn đó là

$(-1;2)$
$(-2;4)$
$(1;-2)$
$(2;-4)$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức $z$ thỏa mãn $\big|z+(2-3i)\big|=2$ là đường tròn $(\mathscr{C})$. Tìm tâm $I$ và bán kính $R$ của đường tròn $(\mathscr{C})$.

$I(2;-3),\,R=\sqrt{2}$
$I(2;-3),\,R=4$
$I(-2;3),\,R=\sqrt{2}$
$I(-2;3),\,R=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức $z$ thỏa mãn $|z|=\sqrt{7}$.

Đường tròn tâm $O(0;0)$, bán kính $R=\dfrac{7}{2}$
Đường tròn tâm $O(0;0)$, bán kính $R=7$
Đường tròn tâm $O(0;0)$, bán kính $R=49$
Đường tròn tâm $O(0;0)$, bán kính $R=\sqrt{7}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho số phức $z$ thỏa điều kiện $|z|=10$ và $w=(6+8i)\cdot\overline{z}+(1-2i)^2$. Tập hợp điểm biểu diễn cho số phức $w$ là đường tròn có tâm là

$I(-3;-4)$
$I(3;4)$
$I(6;8)$
$I(1;-2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Với các số phức \(z\) thỏa mãn \(\left|z-2+i\right|=4\), tập hợp điểm biểu diễn các số phức \(z\) là một đường tròn. Tìm bán kính \(R\) của đường tròn đó.

\(R=8\)
\(R=16\)
\(R=2\)
\(R=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).

Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\)
Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\)
Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\)
Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.

$I(-3;-5)$, $R=\sqrt{5}$
$I(3;-5)$, $R=\sqrt{10}$
$I(-3;5)$, $R=\sqrt{10}$
$I(3;5)$, $R=10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập hợp các số phức $z$ thỏa mãn $|z+1-2i|=3$ là đường tròn có tâm

$I(-1;2)$
$I(-1;-2)$
$I(1;-2)$
$I(1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trên mặt phẳng tọa độ, biết tập họp điểm biểu diễn các số phức $z$ thỏa mãn $|z+2i|=1$ là một đường tròn. Tâm của đường tròn đó có tọa độ là

$(0;2)$
$(-2;0)$
$(0;-2)$
$(2;0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong mặt phẳng $Oxy$, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-(2-3i)\right|\leq2$.

Một đường thẳng
Một đường tròn
Một hình tròn
Một đường elip
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).

Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là

$(3;7)$
$(-3;0)$
$(3;0)$
$(-3;7)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là

$\left(-1;-\dfrac{2}{3}\right)$
$\left(-1;\dfrac{2}{3}\right)$
$\left(1;-\dfrac{2}{3}\right)$
$\left(1;\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là

$P(3;-12)$
$Q(3;12)$
$M(14;-5)$
$N(-3;12)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2-7i$ có tọa độ là

$(2;7)$
$(-2;7)$
$(2;-7)$
$(-7;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, điểm $M(-3;4)$ là điểm biểu diễn của số phức nào dưới đây?

$z_2=3+4i$
$z_3=-3+4i$
$z_4=-3-4i$
$z_1=3-4i$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là

$\left(5;1\right)$
$\left(-1;-5\right)$
$\left(1;5\right)$
$\left(-5;-1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên mặt phẳng $Oxy$, cho các điểm như hình bên.

Điểm biểu diễn số phức $z=-3+2i$ là

điểm $N$
điểm $Q$
điểm $M$
điểm $P$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Gọi $z_1,\,z_2$ là hai trong các số phức thỏa mãn $(z-6)\big(8+\overline{zi}\big)$ là số thực. Biết rằng $\left|z_1-z_2\right|=4$. Tìm giá trị nhỏ nhất $m$ của $\left|z_1+3z_2\right|$.

$m=5-\sqrt{21}$
$m=20-4\sqrt{21}$
$m=4\left(5-\sqrt{22}\right)$
$m=5+\sqrt{22}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.

Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?

$M$
$Q$
$P$
$N$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự