Trong không gian $Oxyz$, cho mặt cầu có phương trình $x^2+y^2+z^2-2x+4y-6z+9=0$. Tọa độ tâm $I$ và bán kính $R$ của mặt cầu là
$I(-1;2;-3)$ và $R=5$ | |
$I(-1;2;-3)$ và $R=\sqrt{5}$ | |
$I(1;-2;3)$ và $R=5$ | |
$I(1;-2;3)$ và $R=\sqrt{5}$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon(x+1)^2+(y-2)^2+z^2=9$ có bán kính bằng
$3$ | |
$81$ | |
$9$ | |
$6$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+6z-2=0$ có bán kính bằng
$\sqrt{11}$ | |
$3\sqrt{6}$ | |
$2\sqrt{3}$ | |
$\sqrt{15}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2+4x-8y+2z+1=0$ và mặt phẳng $(P)\colon2x+y+3z-3=0$. Biết $(P)$ cắt $(S)$ theo giao tuyến là một đường tròn, tìm tọa độ tâm $I$ và bán kính $r$ của đường tròn đó.
$I\left(\dfrac{8}{7};\dfrac{25}{7};-\dfrac{16}{7}\right)$ và $r=\dfrac{2\sqrt{854}}{3}$ | |
$I\left(\dfrac{8}{7};-\dfrac{31}{7};-\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{5}$ | |
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{7}$ | |
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{3}$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-2x+2y-6z+2=0$ cắt mặt phẳng $(Oyz)$ theo giao tuyến là một đường tròn có bán kính bằng
$3$ | |
$1$ | |
$2\sqrt{2}$ | |
$\sqrt{2}$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+2y-6z+4=0$ có bán kính bằng
$\sqrt{53}$ | |
$4\sqrt{2}$ | |
$3\sqrt{7}$ | |
$\sqrt{10}$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon(x-1)^2+(y-2)^2+(z+3)^2=4$ có bán kính bằng
$2$ | |
$\sqrt{2}$ | |
$4$ | |
$16$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+(y-1)^2+z^2=9$ có bán kính bằng
$9$ | |
$3$ | |
$81$ | |
$6$ |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon x^2+y^2+\left(z+2\right)^2=9\). Bán kính của \(\left(S\right)\) bằng
\(6\) | |
\(18\) | |
\(9\) | |
\(3\) |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\) có phương trình \(x^2+y^2+z^2-2x-4y+6z+10=0\). Bán kính của mặt cầu \(\left(S\right)\) bằng
\(R=4\) | |
\(R=1\) | |
\(R=2\) | |
\(R=3\sqrt{2}\) |
Trong không gian \(Oxyz\), mặt cầu \((S)\colon x^2+y^2+z^2+4x-2y+2z-3=0\) có tâm và bán kính là
\(I(2;-1;1),\,R=9\) | |
\(I(2;-1;1),\,R=3\) | |
\(I(-2;1;-1),\,R=3\) | |
\(I(-2;1;-1),\,R=9\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon(x-7)^2+(y+3)^2+z^2=16\). Tìm tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu \((S)\).
\(I(-7;3;0)\) và \(R=4\) | |
\(I(7;-3;0)\) và \(R=4\) | |
\(I(-7;3;0)\) và \(R=16\) | |
\(I(7;-3;0)\) và \(R=16\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
\(-2\) | |
\(-3\) | |
\(0\) | |
\(3\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon x+y-2z+3=0\) và điểm \(I\left(1;1;0\right)\). Phương trình mặt cầu tâm \(I\) và tiếp xúc với \(\left(P\right)\) là
\(\left(x+1\right)^2+\left(y+1\right)^2+z^2=\dfrac{25}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{\sqrt{6}}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{25}{6}\) |
Cho mặt cầu \((S)\colon\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=12\). Trong các mệnh đề sau, mệnh đề nào sai?
\((S)\) đi qua điểm \(M(1;0;1)\) | |
\((S)\) đi qua điểm \(N(-3;4;2)\) | |
\((S)\) có tâm \(I(-1;2;3)\) | |
\((S)\) có bán kính \(R=2\sqrt{3}\) |
Trong không gian \(Oxyz\), tọa độ tâm \(I\), bán kính \(R\) của mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-20=0\) là
\(I\left(1;2;0\right),\,R=5\) | |
\(I\left(1;-2\right),\,R=5\) | |
\(I\left(-1;2;0\right),\,R=5\) | |
\(I\left(1;-2;0\right),\,R=5\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2+6x-4y+2z-2=0\). Tọa độ tâm \(I\) và bán kính \(R\) của \((S)\) là
\(I(-3;2;-1)\) và \(R=4\) | |
\(I(-3;2;-1)\) và \(R=16\) | |
\(I(3;-2;1)\) và \(R=4\) | |
\(I(3;-2;1)\) và \(R=16\) |
Trong không gian \(Oxyz\), mặt cầu \((S)\colon(x-1)^2+(y-2)^2+(z+3)^2=4\) có bán kính bằng
\(4\) | |
\(2\) | |
\(\pm2\) | |
\(16\) |
Trong không gian \(Oxyz\), mặt cầu \((S)\colon x^2+y^2+z^2+2x+4y-2z-3=0\) có bán kính bằng
\(\sqrt{3}\) | |
\(1\) | |
\(3\) | |
\(9\) |