Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
![]() | \(M\left(0;0;1\right)\) |
![]() | \(M\left(2;-4;-1\right)\) |
![]() | \(M\left(4;0;3\right)\) |
![]() | \(M\left(0;-1;0\right)\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là
![]() | $2y+z=0$ |
![]() | $2y-z=0$ |
![]() | $y+z=0$ |
![]() | $y-z=0$ |
Trong không gian \(Oxyz\), cho bốn điểm \(A(2;0;0)\), \(B(0;4;0)\), \(C(0;0;6)\) và \(D(2;4;6)\). Gọi \((P)\) là mặt phẳng song song với mặt phẳng \((ABC)\) đồng thời cách đều điểm \(D\) và mặt phẳng \((ABC)\). Phương trình của \((P)\) là
![]() | \(6x+3y+2z-24=0\) |
![]() | \(6x+3y+2z-12=0\) |
![]() | \(6x+3y+2z=0\) |
![]() | \(6x+3y+2z-36=0\) |
Trong không gian \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;-2;-2)\) lên các trục tọa độ \(Ox,\,Oy,\,Oz\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\) bằng
![]() | \(\dfrac{\sqrt{6}}{3}\) |
![]() | \(\dfrac{2\sqrt{3}}{3}\) |
![]() | \(\dfrac{\sqrt{6}}{6}\) |
![]() | \(\dfrac{\sqrt{3}}{2}\) |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.
![]() | $3$ |
![]() | $1$ |
![]() | $2$ |
![]() | $0$ |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
![]() | $1$ |
![]() | $2$ |
![]() | $3$ |
![]() | $4$ |
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
![]() | $cd=3$ |
![]() | $cd=0$ |
![]() | $cd=12$ |
![]() | $cd=6$ |
Trong không gian $Oxyz$, cho điểm $M(2;-5;3)$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Mặt phẳng đi qua $M$ và vuông góc với $d$ có phương trình là
![]() | $2x-5y+3z-38=0$ |
![]() | $2x+4y-z+19=0$ |
![]() | $2x+4y-z-19=0$ |
![]() | $2x+4y-z+11=0$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
![]() | $\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ |
![]() | $\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ |
![]() | $\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ |
![]() | $\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |
Trong không gian $Oxyz$, phương trình mặt phẳng chứa trục $Oy$ và qua điểm $A(1;4;-3)$ là
![]() | $3x+z=0$ |
![]() | $3x+y=0$ |
![]() | $x+3z=0$ |
![]() | $3x-z=0$ |
Trong không gian $Oxyz$ cho điểm $P(2;-3;1)$. Gọi $A$, $B$, $C$ lần lượt là hình chiếu vuông góc của điểm $P$ trên ba trục tọa độ $Ox$, $Oy$ và $Oz$. Phương trình mặt phẳng đi qua ba điểm $A$, $B$, $C$ là
![]() | $\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{1}=1$ |
![]() | $2x-3y+z=1$ |
![]() | $3x-2y+6z=1$ |
![]() | $3x-2y+6z-6=0$ |
Trong không gian $Oxyz$, cho điểm $P(3;1;3)$ và đường thẳng $d\colon\dfrac{x-3}{1}=\dfrac{y+4}{3}=\dfrac{z-2}{3}$. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm $P$ và vuông góc với đường thẳng $d$?
![]() | $x-4y+3z+3=0$ |
![]() | $x+3y+3z-3=0$ |
![]() | $3x+y+3z-15=0$ |
![]() | $x+3y+3z-15=0$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
![]() | $(4;-1;6)$ |
![]() | $(4;6;1)$ |
![]() | $(-4;6;-1)$ |
![]() | $(4;1;6)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)$ chứa điểm $H(1;2;2)$ và cắt tia $Ox$, $Oy$, $Oz$ lần lượt tại $A,\,B,\,C$ sao cho $H$ là trực tâm của tam giác $ABC$. Phương trình mặt phẳng $(P)$ là
![]() | $2x+y+z-2=0$ |
![]() | $x+2y-2z-9=0$ |
![]() | $x+2y+2z-9=0$ |
![]() | $2x+y+z-6=0$ |
Trong không gian $Oxyz$, gọi $(P)$ là mặt phẳng chứa trục $Oy$ và tạo với mặt phẳng $y+z+1=0$ một góc $60^\circ$. Phương trình mặt phẳng $(P)$ là
![]() | $\left[\begin{array}{l}x-y=0\\ x+y=0\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x-z=0\\ x+z=0\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x-z-1=0\\ x-z=0\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x-2z=0\\ x+z=0\end{array}\right.$ |
Trong không gian $Oxyz$, cho điểm $A(2;-1;1)$. Phương trình mặt phẳng $\left(\alpha\right)$ qua các hình chiếu của điểm $A$ trên các trục tọa độ là
![]() | $\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=-1$ |
![]() | $\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=0$ |
![]() | $\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=1$ |
![]() | $\dfrac{x}{2}+\dfrac{y}{1}+\dfrac{z}{1}=1$ |
Trong không gian \(Oxyz\), cho điểm \(M\left(2;-2;3\right)\) và đường thẳng \(d\colon\dfrac{x-1}{3}=\dfrac{y+2}{2}=\dfrac{z-3}{-1}\). Mặt phẳng đi qua \(M\) và vuông góc với \(d\) có phương trình là
![]() | \(3x+2y-z+1=0\) |
![]() | \(2x-2y+3z-17=0\) |
![]() | \(3x+2y-z-1=0\) |
![]() | \(2x-2y+3z+17=0\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng
![]() | \(2\) |
![]() | \(-1\) |
![]() | \(-2\) |
![]() | \(1\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left(P\right)\) và cách \(\left(P\right)\) một khoảng bằng \(3\)?
![]() | \(\left(Q\right)\colon2x+2y-z+10=0\) |
![]() | \(\left(Q\right)\colon2x+2y-z+4=0\) |
![]() | \(\left(Q\right)\colon2x+2y-z+8=0\) |
![]() | \(\left(Q\right)\colon2x+2y-z-8=0\) |
Trong không gian \(Oxyz\), cho điểm \(M\left(2;1;0\right)\) và đường thẳng \(\Delta\colon\dfrac{x-3}{1}=\dfrac{y-1}{4}=\dfrac{z+1}{-2}\). Mặt phẳng đi qua \(M\) và vuông góc với \(\Delta\) có phương trình là
![]() | \(3x+y-z-7=0\) |
![]() | \(x+4y-2z+6=0\) |
![]() | \(x+4y-2z-6=0\) |
![]() | \(3x+y-z+7=0\) |