Ngân hàng bài tập

Bài tập tương tự

C

Cho cấp số cộng \(\left(u_n\right)\) với \(u_1=3\) và \(u_2=9\). Công sai của cấp số cộng đã cho bằng

\(6\)
\(3\)
\(12\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tổng \(n\) số hạng đầu tiên của một cấp số cộng là \(S_n=n^2+4n\) với \(n\in\mathbb{N}^*\). Tìm số hạng tổng quát \(u_n\) của cấp số cộng đã cho.

\(u_n=2n+3\)
\(u_n=3n+2\)
\(u_n=5\cdot3^{n-1}\)
\(u_n=5\cdot\left(\dfrac{8}{5}\right)^{n-1}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tổng \(n\) số hạng đầu tiên của một cấp số cộng là \(S_n=\dfrac{3n^2-19n}{4}\) với \(n\in\mathbb{N}^*\). Tìm số hạng đầu tiên \(u_1\) và công sai \(d\) của cấp số cộng đã cho.

\(\begin{cases}u_1=2\\ d=-\dfrac{1}{2}\end{cases}\)
\(\begin{cases}u_1=-4\\ d=\dfrac{3}{2}\end{cases}\)
\(\begin{cases}u_1=-\dfrac{3}{2}\\ d=-2\end{cases}\)
\(\begin{cases}u_1=\dfrac{5}{2}\\ d=\dfrac{1}{2}\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một cấp số cộng có \(12\) số hạng. Biết rằng tổng của \(12\) số hạng đó bằng \(144\) và số hạng thứ \(12\) bằng \(23\). Khi đó công sai \(d\) của cấp số cộng đã cho bằng

\(2\)
\(3\)
\(4\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Số hạng tổng quát của một cấp số cộng là \(u_n=3n+4\) với \(n\in\mathbb{N}^*\). Gọi \(S_n\) là tổng của \(n\) số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

\(S_n=\dfrac{3^n-1}{2}\)
\(S_n=\dfrac{7\left(3^n-1\right)}{2}\)
\(S_n=\dfrac{3n^2+5n}{2}\)
\(S_n=\dfrac{3n^2+11n}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_1+u_7=26\\
u_2^2+u_6^2=466
\end{cases}\). Mệnh đề nào sau đây đúng?

\(\begin{cases}u_1=13\\ d=-3\end{cases}\)
\(\begin{cases}u_1=10\\ d=-3\end{cases}\)
\(\begin{cases}u_1=1\\ d=4\end{cases}\)
\(\begin{cases}u_1=13\\ d=-4\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_2+u_4+u_6=36\\
u_2\cdot u_3=54
\end{cases}\). Tìm công sai \(d\) của cấp số cộng đã cho, biết rằng \(d<10\).

\(d=3\)
\(d=5\)
\(d=6\)
\(d=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_7-u_3=8\\
u_2\cdot u_7=75
\end{cases}\). Tìm số hạng đầu \(u_1\) của cấp số cộng đã cho.

\(u_1=-3\)
\(u_1=17\)
\(u_1=-17\)
\(u_1=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm số hạng đầu \(u_1\) và công sai \(d\) của cấp số cộng \(\left(u_n\right)\), biết \(\begin{cases}
u_1-u_3+u_5=10\\
u_1+u_6=7
\end{cases}\).

\(\begin{cases}u_1=-36\\ d=13\end{cases}\)
\(\begin{cases}u_1=36\\ d=13\end{cases}\)
\(\begin{cases}u_1=36\\ d=-13\end{cases}\)
\(\begin{cases}u_1=-36\\ d=-13\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_1-u_3+u_5=15\\
u_1+u_6=27
\end{cases}\). Mệnh đề nào sau đây đúng?

\(\begin{cases}u_1=21\\ d=3\end{cases}\)
\(\begin{cases}u_1=21\\ d=-3\end{cases}\)
\(\begin{cases}u_1=18\\ d=3\end{cases}\)
\(\begin{cases}u_1=21\\ d=4\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) có \(u_4=-12\) và \(u_{14}=18\). Tìm số hạng đầu tiên \(u_1\) và công sai \(d\) của cấp số cộng đã cho.

\(\begin{cases}u_1=-21\\ d=3\end{cases}\)
\(\begin{cases}u_1=-20\\ d=-3\end{cases}\)
\(\begin{cases}u_1=-22\\ d=3\end{cases}\)
\(\begin{cases}u_1=-21\\ d=-3\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một cấp số cộng có \(6\) số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng \(17\), tổng của số hạng thứ hai và số hạng thứ tư bằng \(14\). Tìm công sai \(d\) của cấp số cộng đã cho.

\(d=2\)
\(d=3\)
\(d=4\)
\(d=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho dãy số hữu hạn \(\left(u_n\right)\) được xác định như sau: \(u_1=-2\), \(u_2=0\), \(u_3=2\), \(u_4=4\), \(u_5=6\). Biết \(u_1\) là số hạng đầu và \(u_5\) là số hạng cuối. Số hạng tổng quát của dãy số trên là

\(u_n=n-2\)
\(u_n=-2n\)
\(u_n=2n-4\)
\(u_n=-2(n+1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Một cấp số cộng có \(8\) số hạng. Số hạng đầu là \(5\), số hạng thứ tám là \(40\). Khi đó công sai của cấp số cộng đó là

\(d=4\)
\(d=5\)
\(d=7\)
\(d=6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số cộng \(\left(u_n\right)\) có \(u_n=-1\) và \(u_{n+1}=8\). Tính công sai \(d\) của \(\left(u_n\right)\).

\(d=-9\)
\(d=7\)
\(d=-7\)
\(d=9\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các dãy số dưới đây, dãy số nào là cấp số cộng?

\(2,\,8,\,32\)
\(3,\,7,\,11,\,16\)
\(\left(u_n\right)\colon u_n=4+3n\)
\(\left(v_n\right)\colon v_n=n^3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các dãy số được cho bởi số hạng tổng quát dưới đây, dãy số nào không phải cấp số cộng?

\(u_n=-4n+9\)
\(u_n=-2n+19\)
\(u_n=-2n-21\)
\(u_n=-2^n+15\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các dãy số với số hạng tổng quát dưới đây, dãy số nào là cấp số cộng?

\(u_n=7-3n\)
\(u_n=8-3^n\)
\(u_n=\dfrac{7}{3n}\)
\(u_n=7\cdot3^n\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho cấp số cộng \(\left(u_n\right)\) có \(u_3=15\) và \(d=-2\). Tìm \(u_n\).

\(u_n=-2n+21\)
\(u_n=-\dfrac{3}{2}n+12\)
\(u_n=-3n-17\)
\(u_n=\dfrac{3}{2}n^2-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-3\) và \(d=\dfrac{1}{2}\). Khẳng định nào sau đây đúng?

\(u_n=-3+\dfrac{1}{2}(n+1)\)
\(u_n=-3+\dfrac{1}{2}n-1\)
\(u_n=-3+\dfrac{1}{2}(n-1)\)
\(u_n=-3+\dfrac{1}{4}(n-1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự