Ngân hàng bài tập

Bài tập tương tự

B

Với giá trị nào của \(x\) và \(y\) thì các số \(-7;x;11;y\) theo thứ tự lập thành một cấp số cộng?

\(x=1,\,y=21\)
\(x=2,\,y=20\)
\(x=3,\,y=19\)
\(x=4,\,y=18\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Nếu các số \(5+m\), \(7+2m\), \(17+m\) theo thứ tự lập thành một cấp số cộng thì \(m\) bằng

\(2\)
\(3\)
\(4\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho các số \(-4;1;6;x\) theo thứ tự lập thành một cấp số cộng. Tìm \(x\).

\(x=7\)
\(x=10\)
\(x=11\)
\(x=12\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số thập phân vô hạn tuần hoàn \(B=5,231231\ldots\) được biểu diễn bởi phân số tối giản \(\dfrac{a}{b}\). Tính \(T=a-b\).

\(1409\)
\(1490\)
\(1049\)
\(1940\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số thập phân vô hạn tuần hoàn \(A=0,353535\ldots\) được biểu diễn bởi phân số tối giản \(\dfrac{a}{b}\). Tính \(T=a\cdot b\).

\(3456\)
\(3465\)
\(3645\)
\(3546\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết rằng \(\lim\dfrac{n+\sqrt{n^2+1}}{\sqrt{n^2-n-2}}=a\cdot\sin\dfrac{\pi}{4}+b\), với \(a,\,b\in\mathbb{Z}\). Tính \(S=a^3+b^3\).

\(S=1\)
\(S=8\)
\(S=0\)
\(S=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho cấp số nhân có các số hạng lần lượt là \(x,\,12,\,y,\,192\). Mệnh đề nào sau đây là đúng?

\(\begin{cases}x=1\\ y=144\end{cases}\)
\(\begin{cases}x=2\\ y=72\end{cases}\)
\(\begin{cases}x=3\\ y=48\end{cases}\)
\(\begin{cases}x=4\\ y=36\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Với giá trị \(x,\,y\) nào dưới đây thì các số hạng \(-2,\,x,\,-18,\,y\) theo thứ tự lập thành một cấp số nhân?

\(\begin{cases}x=6\\ y=-54\end{cases}\)
\(\begin{cases}x=-10\\ y=-26\end{cases}\)
\(\begin{cases}x=-6\\ y=-54\end{cases}\)
\(\begin{cases}x=-6\\ y=54\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_1+u_7=26\\
u_2^2+u_6^2=466
\end{cases}\). Mệnh đề nào sau đây đúng?

\(\begin{cases}u_1=13\\ d=-3\end{cases}\)
\(\begin{cases}u_1=10\\ d=-3\end{cases}\)
\(\begin{cases}u_1=1\\ d=4\end{cases}\)
\(\begin{cases}u_1=13\\ d=-4\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_2+u_4+u_6=36\\
u_2\cdot u_3=54
\end{cases}\). Tìm công sai \(d\) của cấp số cộng đã cho, biết rằng \(d<10\).

\(d=3\)
\(d=5\)
\(d=6\)
\(d=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_7-u_3=8\\
u_2\cdot u_7=75
\end{cases}\). Tìm số hạng đầu \(u_1\) của cấp số cộng đã cho.

\(u_1=-3\)
\(u_1=17\)
\(u_1=-17\)
\(u_1=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm số hạng đầu \(u_1\) và công sai \(d\) của cấp số cộng \(\left(u_n\right)\), biết \(\begin{cases}
u_1-u_3+u_5=10\\
u_1+u_6=7
\end{cases}\).

\(\begin{cases}u_1=-36\\ d=13\end{cases}\)
\(\begin{cases}u_1=36\\ d=13\end{cases}\)
\(\begin{cases}u_1=36\\ d=-13\end{cases}\)
\(\begin{cases}u_1=-36\\ d=-13\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(\begin{cases}
u_1-u_3+u_5=15\\
u_1+u_6=27
\end{cases}\). Mệnh đề nào sau đây đúng?

\(\begin{cases}u_1=21\\ d=3\end{cases}\)
\(\begin{cases}u_1=21\\ d=-3\end{cases}\)
\(\begin{cases}u_1=18\\ d=3\end{cases}\)
\(\begin{cases}u_1=21\\ d=4\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) có \(u_4=-12\) và \(u_{14}=18\). Tìm số hạng đầu tiên \(u_1\) và công sai \(d\) của cấp số cộng đã cho.

\(\begin{cases}u_1=-21\\ d=3\end{cases}\)
\(\begin{cases}u_1=-20\\ d=-3\end{cases}\)
\(\begin{cases}u_1=-22\\ d=3\end{cases}\)
\(\begin{cases}u_1=-21\\ d=-3\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một cấp số cộng có \(6\) số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng \(17\), tổng của số hạng thứ hai và số hạng thứ tư bằng \(14\). Tìm công sai \(d\) của cấp số cộng đã cho.

\(d=2\)
\(d=3\)
\(d=4\)
\(d=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho cấp số cộng \(\left(u_n\right)\) có \(u_2=2001\) và \(u_5=1995\). Khi đó \(u_{1001}\) bằng

\(4005\)
\(4003\)
\(3\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số cộng $\big(u_n\big)$ có số hạng đầu $u_1=2$, công sai $d=5$. Giá trị của $u_4$ bằng

$250$
$12$
$22$
$17$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho cấp số cộng $\left(u_n\right)$ với $u_1=7$ và công sai $d=4$. Giá trị của $u_2$ bằng

$11$
$3$
$\dfrac{7}{4}$
$28$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho cấp số cộng $\left(u_n\right)$ có $u_1=1$ và $u_2=3$. Giá trị của $u_3$ bằng

$6$
$9$
$4$
$5$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho cấp số cộng \(\left(u_n\right)\) với \(u_1=3\) và \(u_2=9\). Công sai của cấp số cộng đã cho bằng

\(6\)
\(3\)
\(12\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự