Một cấp số cộng có số hạng đầu là \(1\), công sai là \(4\), tổng của \(n\) số hạng đầu là \(561\). Khi đó số hạng thứ \(n\) của cấp số cộng đó là
\(u_n=57\) | |
\(u_n=61\) | |
\(u_n=65\) | |
\(u_n=69\) |
Cho cấp số cộng $\big(u_n\big)$ có số hạng đầu $u_1=2$, công sai $d=5$. Giá trị của $u_4$ bằng
$250$ | |
$12$ | |
$22$ | |
$17$ |
Cho cấp số cộng $\left(u_n\right)$ với $u_1=7$ và công sai $d=4$. Giá trị của $u_2$ bằng
$11$ | |
$3$ | |
$\dfrac{7}{4}$ | |
$28$ |
Cho cấp số cộng $\left(u_n\right)$ có $u_1=1$ và $u_2=3$. Giá trị của $u_3$ bằng
$6$ | |
$9$ | |
$4$ | |
$5$ |
Tổng của một cấp số nhân lùi vô hạn bằng \(2\), tổng của ba số hạng đầu tiên của cấp số nhân đó bằng \(\dfrac{9}{4}\). Số hạng đầu \(u_1\) của cấp số nhân đã cho là
\(3\) | |
\(4\) | |
\(\dfrac{9}{2}\) | |
\(5\) |
Một du khách vào trường đua ngựa đặt cược, lần đầu đặt \(20000\) đồng, mỗi lần sau tiền đặt cược gấp đôi lần trước đó. Người này thua \(9\) lần liên tiếp và thắng ở lần thứ \(10\). Hỏi du khách trên thắng hay thua bao nhiêu?
Hòa vốn | |
Thua \(20000\) đồng | |
Thắng \(20000\) đồng | |
Thua \(40000\) đồng |
Cho cấp số nhân \(\left(u_n\right)\) có tổng \(n\) số hạng đầu là \(S_n=5^n-1\). Tìm số hạng thứ \(4\) của \(\left(u_n\right)\).
\(u_4=100\) | |
\(u_4=124\) | |
\(u_4=500\) | |
\(u_4=624\) |
Một cấp số nhân có \(6\) số hạng với công bội bằng \(2\) và tổng các số hạng bằng \(189\). Tìm số hạng cuối \(u_6\) của cấp số nhân đã cho.
\(u_6=32\) | |
\(u_6=104\) | |
\(u_6=48\) | |
\(u_6=96\) |
Cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2\) và \(u_2=-8\). Mệnh đề nào sau đây đúng?
\(S_6=130\) | |
\(u_5=256\) | |
\(S_5=256\) | |
\(q=-4\) |
Tính tổng $$T=1000^2-999^2+998^2-997^2+\cdots+2^2-1^2$$
\(T=500500\) | |
\(T=500005\) | |
\(T=505000\) | |
\(T=500050\) |
Tính \(T=15+20+25+\cdots+7515\).
\(T=5651265\) | |
\(T=5651256\) | |
\(T=5651625\) | |
\(T=5651526\) |
Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(u_2+u_{23}=60\). Tính tổng \(S_{24}\) của \(24\) số hạng đầu tiên của cấp số cộng đã cho.
\(S_{24}=60\) | |
\(S_{24}=120\) | |
\(S_{24}=720\) | |
\(S_{24}=1440\) |
Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn \(u_2+u_8+u_9+u_{15}=100\). Tính tổng \(16\) số hạng đầu tiên của \(\left(u_n\right)\).
\(S_{16}=100\) | |
\(S_{16}=200\) | |
\(S_{16}=300\) | |
\(S_{16}=400\) |
Tổng \(n\) số hạng đầu tiên của một cấp số cộng là \(S_n=n^2+4n\) với \(n\in\mathbb{N}^*\). Tìm số hạng tổng quát \(u_n\) của cấp số cộng đã cho.
\(u_n=2n+3\) | |
\(u_n=3n+2\) | |
\(u_n=5\cdot3^{n-1}\) | |
\(u_n=5\cdot\left(\dfrac{8}{5}\right)^{n-1}\) |
Tổng \(n\) số hạng đầu tiên của một cấp số cộng là \(S_n=\dfrac{3n^2-19n}{4}\) với \(n\in\mathbb{N}^*\). Tìm số hạng đầu tiên \(u_1\) và công sai \(d\) của cấp số cộng đã cho.
\(\begin{cases}u_1=2\\ d=-\dfrac{1}{2}\end{cases}\) | |
\(\begin{cases}u_1=-4\\ d=\dfrac{3}{2}\end{cases}\) | |
\(\begin{cases}u_1=-\dfrac{3}{2}\\ d=-2\end{cases}\) | |
\(\begin{cases}u_1=\dfrac{5}{2}\\ d=\dfrac{1}{2}\end{cases}\) |
Một cấp số cộng có \(12\) số hạng. Biết rằng tổng của \(12\) số hạng đó bằng \(144\) và số hạng thứ \(12\) bằng \(23\). Khi đó công sai \(d\) của cấp số cộng đã cho bằng
\(2\) | |
\(3\) | |
\(4\) | |
\(5\) |
Xét các số nguyên dương chia hết cho \(3\). Tổng số \(50\) số nguyên dương đầu tiên đó bằng
\(7650\) | |
\(7500\) | |
\(3900\) | |
\(3825\) |
Số hạng tổng quát của một cấp số cộng là \(u_n=3n+4\) với \(n\in\mathbb{N}^*\). Gọi \(S_n\) là tổng của \(n\) số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
\(S_n=\dfrac{3^n-1}{2}\) | |
\(S_n=\dfrac{7\left(3^n-1\right)}{2}\) | |
\(S_n=\dfrac{3n^2+5n}{2}\) | |
\(S_n=\dfrac{3n^2+11n}{2}\) |
Cho cấp số cộng \(\left(u_n\right)\) có \(u_1=\dfrac{1}{4}\) và \(d=-\dfrac{1}{4}\). Gọi \(S_5\) là tổng năm số hạng đầu tiên của \(\left(u_n\right)\). Mệnh đề nào sau đây đúng?
\(S_5=-\dfrac{5}{4}\) | |
\(S_5=\dfrac{4}{5}\) | |
\(S_5=\dfrac{5}{4}\) | |
\(S_5=-\dfrac{4}{5}\) |
Cho cấp số cộng \(\left(u_n\right)\) có \(u_1=4\) và \(d=-5\). Tính tổng \(100\) số hạng đầu tiên của \(\left(u_n\right)\).
\(S_{100}=24350\) | |
\(S_{100}=-24350\) | |
\(S_{100}=-24600\) | |
\(S_{100}=24600\) |