Cho cấp số nhân $\big(u_n\big)$ với $u_1=1$ và $u_2=2$. Công bội của cấp số nhân đã cho là
$q=\dfrac{1}{2}$ | |
$q=2$ | |
$q=-2$ | |
$q=-\dfrac{1}{2}$ |
Cho cấp số nhân $\left(u_n\right)$ với $u_1=3$ và $u_2=9$. Công bội của cấp số nhân đã cho bằng
$-6$ | |
$\dfrac{1}3$ | |
$3$ | |
$6$ |
Tìm số hạng đầu và công bội của cấp số nhân $\left(u_n\right)$, biết $$\begin{cases}u_1+u_2+u_3=14\\ u_1.u_2.u_3=64\end{cases}$$
Tìm số hạng đầu và công bội của cấp số nhân $\left(u_n\right)$, biết $$\begin{cases}u_1.u_5=25\\ u_2+u_3+u_4=31\end{cases}$$
Cho cấp số nhân \(\left(u_n\right)\) có \(u_1=2\) và \(u_2=-8\). Mệnh đề nào sau đây đúng?
\(S_6=130\) | |
\(u_5=256\) | |
\(S_5=256\) | |
\(q=-4\) |
Cho cấp số nhân \(\left(u_n\right)\) thỏa mãn $$\begin{cases}
u_4-u_2=36\\
u_5-u_3=72
\end{cases}.$$Chọn khẳng định đúng?
\(\begin{cases}u_1=4\\ q=2\end{cases}\) | |
\(\begin{cases}u_1=6\\ q=2\end{cases}\) | |
\(\begin{cases}u_1=9\\ q=2\end{cases}\) | |
\(\begin{cases}u_1=9\\ q=3\end{cases}\) |
Tìm số hạng đầu \(u_1\) và công bội \(q\) của cấp số nhân \(\left(u_n\right)\), biết \(\begin{cases}
u_6=192\\
u_7=384.
\end{cases}\)
\(\begin{cases}u_1=5\\ q=2\end{cases}\) | |
\(\begin{cases}u_1=6\\ q=2\end{cases}\) | |
\(\begin{cases}u_1=6\\ q=3\end{cases}\) | |
\(\begin{cases}u_1=5\\ q=3\end{cases}\) |
Cho cấp số nhân \(\left(u_n\right)\) có \(u_n=81\) và \(u_{n+1}=9\). Mệnh đề nào sau đây đúng?
\(q=\dfrac{1}{9}\) | |
\(q=9\) | |
\(q=-9\) | |
\(q=-\dfrac{1}{9}\) |
Một cấp số nhân có \(6\) số hạng, biết số hạng đầu bằng \(2\) và số hạng thứ sáu bằng \(486\). Tìm công bội \(q\) của cấp số nhân đã cho.
\(q=3\) | |
\(q=-3\) | |
\(q=2\) | |
\(q=-2\) |
Dãy số \(\left(u_n\right)\colon u_n=3^n\) là một cấp số nhân với
Công bội là \(3\) và số hạng đầu là \(3\) | |
Công bội là \(2\) và số hạng đầu là \(6\) | |
Công bội là \(6\) và số hạng đầu là \(6\) | |
Công bội là \(2\) và số hạng đầu là \(3\) |
Cho cấp số nhân \(\left(u_n\right)\) với \(u_1=2\) và \(u_2=6\). Công bội của cấp số đã cho bằng
\(3\) | |
\(-4\) | |
\(4\) | |
\(\dfrac{1}{3}\) |
Cho cấp số nhân $\big(u_n\big)$ với $u_1=2$ và công bội $q=\dfrac{1}{2}$. Giá trị của $u_3$ bằng
$3$ | |
$\dfrac{1}{2}$ | |
$\dfrac{1}{4}$ | |
$\dfrac{7}{2}$ |
Cho cấp số nhân $\big(u_n\big)$ với $u_1=3$ và công bội của cấp số nhân $q=2$. Số hạng thứ $3$ của cấp số nhân đó bằng
$u_3=6$ | |
$u_3=18$ | |
$u_3=12$ | |
$u_3=8$ |
Cho cấp số nhân $\left(u_n\right)$ với $u_1=2$, công bội $q=3$. Số hạng $u_4$ của cấp số nhân bằng
$54$ | |
$11$ | |
$12$ | |
$24$ |
Cho $\left(u_n\right)$ là cấp số nhân với $u_1=3$ và công bội $q=\dfrac{1}{2}$. Gọi $S_n$ là tổng của $n$ số hạng đầu tiên của cấp số nhân đã cho. Ta có $\lim S_n$ bằng
$6$ | |
$\dfrac{3}{2}$ | |
$3$ | |
$\dfrac{1}{2}$ |
Ông Bụt hạ phàm xuống Mỹ Thuận và tặng nước tiên miễn phí cho mọi người. Người nhanh chân đến trước được Bụt ban cho \(1\) lít nước tiên, và cứ người nào đến sau thì đều được ban một lượng nước tiên bằng \(\dfrac{2}{3}\) của người trước đó. Giả sử số người đến nhận nước tiên là vô hạn thì Bụt có thể ban bao nhiêu lít nước tiên?
\(3\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{2}\) | |
\(+\infty\) |
Dãy số \(\left(u_n\right)\) nào sau đây là một cấp số nhân lùi vô hạn?
\(1,\,\dfrac{1}{3},\,\dfrac{1}{9},\,\dfrac{1}{27},\,\dfrac{1}{81},\ldots\) | |
\(1,\,3,9,\,27,\,81,\ldots\) | |
\(1,\,-\dfrac{1}{3},\,\dfrac{1}{9},-\,\dfrac{1}{27},\,\dfrac{1}{81}\) | |
\(10,\,8,\,6,\,4,\,2,\ldots\) |
Từ độ cao \(55,8\) m của tháp nghiên Pisa nước Ý, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm đất thì quả bóng lại nảy lên độ cao bằng \(\dfrac{1}{10}\) độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng từ lúc thả cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào sau đây?
\((67;69)\) | |
\((60;63)\) | |
\((64;66)\) | |
\((69;72)\) |
Số thập phân vô hạn tuần hoàn \(B=5,231231\ldots\) được biểu diễn bởi phân số tối giản \(\dfrac{a}{b}\). Tính \(T=a-b\).
\(1409\) | |
\(1490\) | |
\(1049\) | |
\(1940\) |
Số thập phân vô hạn tuần hoàn \(A=0,353535\ldots\) được biểu diễn bởi phân số tối giản \(\dfrac{a}{b}\). Tính \(T=a\cdot b\).
\(3456\) | |
\(3465\) | |
\(3645\) | |
\(3546\) |