Bất phương trình nào sau đây tương đương với bất phương trình \(\dfrac{x-1}{\sqrt{x^2+1}}\leq\dfrac{1}{\sqrt{x^2+1}}\)?
![]() | \(x-1\geq1\) |
![]() | \(x-1>1\) |
![]() | \(x-1<1\) |
![]() | \(x-1\leq1\) |
Bất phương trình nào dưới đây là bất phương trình bậc nhất hai ẩn?
![]() | \(2x-5y+3z\leq0\) |
![]() | \(3x^2+2x-4>0\) |
![]() | \(2x^2+5y>3\) |
![]() | \(2x+3y<5\) |
Cho \(a\) là số thực dương. Mệnh đề nào dưới đây đúng?
![]() | \(|x|\geq a\Leftrightarrow-a\leq x\leq a\) |
![]() | \(|x|\leq a\Leftrightarrow x\leq a\) |
![]() | \(|x|>a\Leftrightarrow x>a\) |
![]() | \(|x|\geq a\Leftrightarrow\left[\begin{array}{l}x\geq a\\ x\leq-a\end{array}\right.\) |
Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.
![]() | $32$ |
![]() | $29$ |
![]() | $25$ |
![]() | $46$ |
Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?
![]() | $5^x< 5^y\Leftrightarrow x>y$ |
![]() | $5^x>5^y\Leftrightarrow x>y$ |
![]() | $5^x>5^y\Leftrightarrow x< y$ |
![]() | $5^x>5^y\Leftrightarrow x=y$ |
Tập nghiệm của bất phương trình $3^x>5$ là
![]() | $\big(0;\log_35\big)$ |
![]() | $\big(\log_53;+\infty\big)$ |
![]() | $\big(\log_35;+\infty\big)$ |
![]() | $\big(0;\log_53\big)$ |
Xét các số thực $x,\,y$ thỏa mãn $x^2+y^2>1$ và $\log_{x^2+y^2}(2x+4y)\geq1$. Giá trị lớn nhất của biểu thức $P=3x+y$ bằng
![]() | $5+2\sqrt{10}$ |
![]() | $5+4\sqrt{5}$ |
![]() | $5+5\sqrt{2}$ |
![]() | $10+2\sqrt{5}$ |
Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?
![]() | $2011$ |
![]() | $2021$ |
![]() | $2019$ |
![]() | $4041$ |
Số nghiệm nguyên của bất phương trình $\log_4(2x+3)< 2$ là
![]() | $7$ |
![]() | $8$ |
![]() | $9$ |
![]() | $10$ |
Tập nghiệm của bất phương trình $3^x\leq81$ là
![]() | $(-\infty;4]$ |
![]() | $[4;+\infty)$ |
![]() | $(4;+\infty)$ |
![]() | $(-\infty;4)$ |
Tập nghiệm của bất phương trình $\log_5x\geq2$ là
![]() | $[10;+\infty)$ |
![]() | $[0;+\infty)$ |
![]() | $[32;+\infty)$ |
![]() | $[25;+\infty)$ |
Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
![]() | $728$ |
![]() | $726$ |
![]() | $725$ |
![]() | $729$ |
Tập nghiệm của bất phương trình $\log_3(2x)\ge\log_32$ là
![]() | $(0;+\infty)$ |
![]() | $[1;+\infty)$ |
![]() | $(1;+\infty)$ |
![]() | $(0;1]$ |
Tập nghiệm của bất phương trình $2^{2x}< 8$ là
![]() | $\left(-\infty;\dfrac{3}{2}\right)$ |
![]() | $\left(\dfrac{3}{2};+\infty\right)$ |
![]() | $(-\infty;2)$ |
![]() | $\left(0;\dfrac{3}{2}\right)$ |
Có bao nhiêu số nguyên dương $x$ sao cho tồn tại số thực $y$ lớn hơn $1$ thỏa mãn $\big(xy^2+x-2y-1)\log y=\log\dfrac{2y-x+3}{x}$?
![]() | $3$ |
![]() | $1$ |
![]() | Vô số |
![]() | $2$ |
Tìm số nghiệm nguyên của bất phương trình $2023^{2x^2-4x+9}-2023^{x^2+5x+1}-(x-1)(8-x)< 0$.
![]() | $7$ |
![]() | $5$ |
![]() | $6$ |
![]() | $8$ |
Tập nghiệm của bất phương trình $\log_3(x-2)\le2$ là
![]() | $S=(-\infty;11]$ |
![]() | $S=(2;11]$ |
![]() | $S=(2;8]$ |
![]() | $S=(-\infty;8]$ |
Tập nghiệm bất phương trình $2^{x^2-3x}< 16$ là
![]() | $(4;+\infty)$ |
![]() | $(-\infty;-1)\cup(4;+\infty)$ |
![]() | $(-1;4)$ |
![]() | $(-\infty;-1)$ |
Giải bất phương trình $\dfrac{x+11}{5-6x}$.
Giải bất phương trình $2x^2+5x+2\leq0$.