Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).
\(1\) | |
\(0\) | |
\(-1\) | |
\(3\) |
Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng
\(\dfrac{3}{2}\) | |
\(\dfrac{1}{2}\) | |
\(1\) | |
\(2\) |
Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
\(2\) | |
\(-2\) | |
\(-4\) | |
\(3\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
\(S=3\) | |
\(S=4\) | |
\(S=0\) | |
\(S=1\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
\(25\) | |
\(41\) | |
\(20\) | |
\(34\) |
Biết \(\displaystyle\int\limits_2^3\dfrac{x^2-3x+2}{x^2-x+1}\mathrm{\,d}x=a\ln7+b\ln3+c\ln2+d\) (với \(a\), \(b\), \(c\), \(d\) là các số nguyên). Tính giá trị của biểu thức \(T=a+2b^2+3c^3+4d^4\).
\(T=6\) | |
\(T=7\) | |
\(T=9\) | |
\(T=5\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{2x+3}{2-x}\mathrm{\,d}x =a\cdot\ln2+b\) (với \(a,\,b\) là các số nguyên). Khi đó giá trị của \(a\) là
\(-7\) | |
\(7\) | |
\(5\) | |
\(-5\) |
Biết \(\displaystyle\int\limits_1^3\dfrac{x+2}{x}\mathrm{\,d}x=a+b\ln c\) với \(a\), \(b\), \(c\in\mathbb{Z}\), \(c<9\). Tính tổng \(S=a+b+c\).
\(S=6\) | |
\(S=7\) | |
\(S=5\) | |
\(S=8\) |
Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?
$a+2b=0$ | |
$2a-b=0$ | |
$a-b=0$ | |
$a+b=0$ |
Biết tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{2x+3}{2-x}\mathrm{d}x=a\ln2+b$ ($a,\,b\in\mathbb{Z}$), giá trị của $a$ bằng
$7$ | |
$2$ | |
$3$ | |
$1$ |
Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?
$4$ | |
$9$ | |
$15$ | |
$0$ |
Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
\(5\) | |
\(4\) | |
\(3\) | |
\(2\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
\(a+b=0\) | |
\(a-b=0\) | |
\(a+2b=0\) | |
\(2a-b=0\) |
Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
\(S=3\) | |
\(S=6\) | |
\(S=-2\) | |
\(S=0\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{1}{2x-1}\mathrm{\,d}x=\ln a\). Giá trị của \(a\) là
\(81\) | |
\(27\) | |
\(3\) | |
\(9\) |
Biết \(\displaystyle\int\limits_1^2\dfrac{4\mathrm{\,d}x}{(x+4)\sqrt{x}+x\sqrt{x+4}}=\sqrt{a}+\sqrt{b}-\sqrt{c}-d\) với \(a\), \(b\), \(c\), \(d\) là các số nguyên dương. Tính \(P=a+b+c+d\).
\(48\) | |
\(46\) | |
\(54\) | |
\(52\) |
Biết \(I=\displaystyle\int\limits_1^2\dfrac{dx}{\left(2x+2\right)\sqrt{x}+2x\sqrt{x+1}}=\dfrac{\sqrt{a}-\sqrt{b}-c}{2}\) với \(a\), \(b\), \(c\) là các số nguyên dương. Tính \(P=a-b+c\).
\(P=24\) | |
\(P=12\) | |
\(P=18\) | |
\(P=22\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x}{\sqrt{x+1}}\mathrm{\,d}x=\dfrac{a}{b}\left(c-\sqrt{2}\right)\) với \(\dfrac{a}{b}\) là phân số tối giản. Tính \(a+b+c\).
\(-1\) | |
\(7\) | |
\(3\) | |
\(1\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)\) với \(a,\,b\) là các số nguyên dương. Tính \(T=a+b\).
\(T=7\) | |
\(T=10\) | |
\(T=6\) | |
\(T=8\) |
Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng
\(0\) | |
\(2\) | |
\(3\) | |
\(1\) |