Biết rằng miền xác định của bất phương trình \(\sqrt{6-3x}+\dfrac{1}{x+1}>2\) là nửa khoảng \((a;b]\). Giá trị của \(S=2a+b\) bằng bao nhiêu?
\(S=0\) | |
\(S=-2\) | |
\(S=3\) | |
\(S=1\) |
Tìm điều kiện xác định của bất phương trình \(\sqrt{\dfrac{x+1}{(x-2)^2}}<x+1\).
\(x\in[-1;+\infty)\) | |
\(x\in(-1;+\infty)\) | |
\(x\in(-1;+\infty)\setminus\{2\}\) | |
\(x\in[-1;+\infty)\setminus\{2\}\) |
Tìm điều kiện xác định của bất phương trình \(x+\dfrac{x-1}{\sqrt{x+5}}>2-\sqrt{4-x}\).
\(x\in[-5;4]\) | |
\(x\in(-5;4]\) | |
\(x\in[4;+\infty)\) | |
\(x\in(-\infty;-5)\) |
Tìm điều kiện của bất phương trình \(\dfrac{2x-3}{2x+3}>x+1\).
\(x\neq-\dfrac{3}{2}\) | |
\(x\neq\dfrac{3}{2}\) | |
\(x\neq-\dfrac{2}{3}\) | |
\(x\neq\dfrac{2}{3}\) |
Điều kiện của bất phương trình \(\dfrac{1}{x^2-4}>x+2\) là
\(x\neq\pm2\) | |
\(x\neq2\) | |
\(x>2\) | |
\(x>0\) |
Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).
\(m\leq3\) | |
\(m\leq-3\) | |
\(m\leq5\) | |
\(m\leq-1\) |
Tập nghiệm của bất phương trình \(\dfrac{3x-1}{x^2-4}\geq0\) là tập hợp nào sau đây?
\(T=\left(-2;\dfrac{1}{3}\right]\cup(2;+\infty)\) | |
\(P=(-\infty;-2)\cup(2;+\infty)\) | |
\(Q=(-2;2)\) | |
\(S=(-\infty;-2)\cup\left[\dfrac{1}{3};2\right)\) |
Tìm tập nghiệm \(S\) của bất phương trình \(\dfrac{1}{x-1}\leq1\).
\(S=(-\infty;2]\) | |
\(S=(1;+\infty)\) | |
\(S=(1;2]\) | |
\(S=(-\infty;1)\cup[2;+\infty)\) |
Tìm tất cả các nghiệm của bất phương trình \((2x-3)(5-3x)>0\).
\(x<\dfrac{3}{2},\,x>\dfrac{5}{3}\) | |
\(x>\dfrac{5}{3}\) | |
\(\dfrac{3}{2}< x<\dfrac{5}{3}\) | |
\(x<\dfrac{3}{2}\) |
Bất phương trình nào sau đây tương đương với bất phương trình \(\dfrac{x-1}{\sqrt{x^2+1}}\leq\dfrac{1}{\sqrt{x^2+1}}\)?
\(x-1\geq1\) | |
\(x-1>1\) | |
\(x-1<1\) | |
\(x-1\leq1\) |
Gọi \(\mathscr{D}\) là miền xác định của bất phương trình \(\dfrac{x-1}{\sqrt{2-3x}}\leq0\). Hãy tìm \(\mathscr{D}\).
\(\mathscr{D}=\left(-\infty;\dfrac{3}{2}\right)\) | |
\(\mathscr{D}=\left[\dfrac{2}{3};+\infty\right)\) | |
\(\mathscr{D}=\left(-\infty;\dfrac{2}{3}\right)\) | |
\(\mathscr{D}=\left[\dfrac{2}{3};+\infty\right)\) |
Tập nghiệm của bất phương trình \(\dfrac{3x}{4-x^2}\geq1\) là
\((-4;-2)\cup(1;2)\) | |
\((-\infty;-4]\cup(-2;1]\cup(2;+\infty)\) | |
\([-4;-2)\cup[1;2)\) | |
\([-4;-2]\cup[1;2]\) |
Tập nghiệm của bất phương trình \(\dfrac{-3x^2+2x+5}{x-1}\leq0\) là
\((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
\((-1;1)\cup\left(\dfrac{5}{3};+\infty\right)\) | |
\([-1;1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
\([-1;1)\cup\left[\dfrac{5}{3};+\infty\right)\) |
Bất phương trình \(\dfrac{1}{x-1}+\dfrac{2}{x-2}>0\) có tập nghiệm là
\(\left(1;\dfrac{4}{3}\right]\cup(2;+\infty)\) | |
\(\left(1;\dfrac{4}{3}\right)\cup(2;+\infty)\) | |
\((-\infty;1)\cup\left[\dfrac{4}{3};2\right)\) | |
\(\left(\dfrac{4}{3};2\right)\cup(-\infty;1)\) |
Tập nghiệm của bất phương trình \(\dfrac{x-1}{x+2}<0\) là
\((-2;1)\) | |
\((-2;1]\) | |
\((-\infty;-2)\cup(1;+\infty)\) | |
\((-\infty;-2)\cup[1;+\infty)\) |
Hãy chỉ ra điều kiện xác định của bất phương trình $$3\sqrt{x-2}+4x-1\leq5(x+1).$$
\(x\geq2\) | |
\(x\leq2\) | |
\(x>2\) | |
\(x\geq-1\) |
Có bao nhiêu giá trị nguyên dương của \(x\) thỏa mãn $$\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}<\dfrac{2x}{2x-x^2}?$$
\(0\) | |
\(2\) | |
\(1\) | |
\(3\) |