Cho góc \(\alpha\) thỏa mãn \(\cos\alpha=\dfrac{3}{5}\) và \(-\dfrac{\pi}{2}<\alpha<0\). Tính $$P=\sqrt{5+3\tan\alpha}+\sqrt{6-4\cot\alpha}.$$
\(P=4\) | |
\(P=-4\) | |
\(P=6\) | |
\(P=-6\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{1}{3}\) và \(90^\circ<\alpha<180^\circ\). Tính \(P=\dfrac{2\tan\alpha+3\cot\alpha+1}{\tan\alpha+\cot\alpha}\).
\(P=\dfrac{19+2\sqrt{2}}{9}\) | |
\(P=\dfrac{19-2\sqrt{2}}{9}\) | |
\(P=\dfrac{26-2\sqrt{2}}{9}\) | |
\(P=\dfrac{26+2\sqrt{2}}{9}\) |
Cho góc \(\alpha\) thỏa mãn \(\sin\alpha=\dfrac{3}{5}\) và \(\dfrac{\pi}{2}<\alpha<\pi\). Tính \(P=\dfrac{\tan\alpha}{1+\tan^2\alpha}\).
\(P=-3\) | |
\(P=\dfrac{3}{7}\) | |
\(P=\dfrac{12}{25}\) | |
\(P=-\dfrac{12}{25}\) |
Cho góc \(\alpha\) thỏa mãn \(\tan\alpha=2\) và \(180^\circ<\alpha<270^\circ\). Tính \(P=\cos\alpha+\sin\alpha\).
\(P=-\dfrac{3\sqrt{5}}{5}\) | |
\(P=1-\sqrt{5}\) | |
\(P=\dfrac{3\sqrt{5}}{2}\) | |
\(P=\dfrac{\sqrt{5}-1}{2}\) |
Gọi $M$ và $m$ lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y=2\cos2x+3$. Tính tổng $M+m$.
$8$ | |
$6$ | |
$7$ | |
$3$ |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
$-77$ | |
$-17$ | |
$103$ | |
$43$ |
Tính tổng các nghiệm thuộc $\left[-2\pi;2\pi\right]$ của phương trình $\sin^2x+\cos2x+2\cos x=0$.
$2\pi$ | |
$\dfrac{2\pi}{3}$ | |
$\dfrac{\pi}{3}$ | |
$0$ |
Biết rằng tập hợp tất cả các giá trị của $m$ để phương trình $m\sin2x-4\cos2x=-6$ vô nghiệm là khoảng $(a;b)$, với $a<b$. Tính $P=ab$.
$P=2\sqrt{5}$ | |
$P=-20$ | |
$P=20$ | |
$P=52$ |
Tính tổng các nghiệm của phương trình $2\cos^2x+5\sin x-4=0$ trong $[0;2\pi]$.
$0$ | |
$\dfrac{8\pi}{3}$ | |
$\pi$ | |
$\dfrac{5\pi}{6}$ |
Tổng các nghiệm của phương trình $\sin^22x+\cos^23x=1$ trên khoảng $0< x<\pi$ là
$0$ | |
$\dfrac{\pi}{5}$ | |
$\pi$ | |
$2\pi$ |
Phương trình $3\cos x+\cos2x-\cos3x+1=2\sin x\sin2x$ có $\alpha$ là nghiệm lớn nhất thuộc khoảng $(0;2\pi)$. Tìm $\sin2\alpha$.
$\dfrac{1}{2}$ | |
$1$ | |
$-\dfrac{1}{2}$ | |
$0$ |
Tổng các nghiệm của phương trình $\cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}$ trong khoảng $(-\pi;\pi)$ là
$-\dfrac{\pi}{2}$ | |
$\dfrac{\pi}{4}$ | |
$\dfrac{\pi}{2}$ | |
$-\dfrac{3\pi}{2}$ |
Phương trình $\sin x+\sqrt{3}\cos x=\sqrt{2}$ có nghiệm $x=\alpha+k2\pi$ và $x=\beta+k2\pi$ với $-\dfrac{\pi}{2}<\alpha,\,\beta<\dfrac{\pi}{2}$ $(k\in\mathbb{Z})$. Khi đó, $\alpha\cdot\beta$ bằng
$\dfrac{7\pi^2}{144}$ | |
$-\dfrac{5\pi^2}{144}$ | |
$\dfrac{5\pi^2}{144}$ | |
$-\dfrac{7\pi^2}{144}$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\sin x-\cos x+3$. Tính $M\cdot m$.
$7$ | |
$-4$ | |
$-7$ | |
$6$ |
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
$4\sqrt{2}$ | |
$2\sqrt{2}$ | |
$4$ | |
$\sqrt{2}$ |
Biết rằng tập hợp tất cả các giá trị của \(m\) để phương trình $$m\sin2x-4\cos2x=-6$$vô nghiệm là khoảng \((a,b)\), với \(a< b\). Tính \(P=a\cdot b\).
\(P=2\sqrt{5}\) | |
\(P=-20\) | |
\(P=20\) | |
\(P=52\) |
Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\sin x+\cos x\). Tính \(P=M-m\).
\(P=4\) | |
\(P=2\sqrt{2}\) | |
\(P=\sqrt{2}\) | |
\(P=2\) |
Nếu \(\tan x=-3\) thì
\(\cot x=-\dfrac{1}{3}\) | |
\(\cot x=\dfrac{1}{3}\) | |
\(\cos x=-\dfrac{1}{10}\) | |
\(\cos x=\dfrac{1}{10}\) |
Trong đường tròn lượng giác, trục tung nhận giá trị nào của cung lượng giác?
\(\cot\) | |
\(\cos\) | |
\(\tan\) | |
\(\sin\) |
Tính giá trị của \(\cot\dfrac{89\pi}{6}\).
\(\cot\dfrac{89\pi}{6}=\sqrt{3}\) | |
\(\cot\dfrac{89\pi}{6}=-\sqrt{3}\) | |
\(\cot\dfrac{89\pi}{6}=\dfrac{\sqrt{3}}{3}\) | |
\(\cot\dfrac{89\pi}{6}=-\dfrac{\sqrt{3}}{3}\) |