Cho hàm số \(f(x)=\begin{cases}
\dfrac{x^2+1}{1-x} &\text{với }x<1\\
\sqrt{2x-2} &\text{với }x\geq1.
\end{cases}\)
Tính giới hạn \(\lim\limits_{x\to1^-}f(x)\).
![]() | \(+\infty\) |
![]() | \(-1\) |
![]() | \(0\) |
![]() | \(1\) |
Giới hạn \(\lim\limits_{x\to1^+}\dfrac{x+3}{x-1}\) bằng
![]() | \(-\infty\) |
![]() | \(+\infty\) |
![]() | \(4\) |
![]() | Không tồn tại |
Tính giới hạn \(\lim\limits_{x\to3^-}\dfrac{3-x}{\sqrt{27-x^3}}\).
![]() | \(\dfrac{1}{3}\) |
![]() | \(0\) |
![]() | \(\dfrac{5}{3}\) |
![]() | \(\dfrac{3}{5}\) |
Cho hàm số \(f(x)=\begin{cases}
\dfrac{2x}{\sqrt{1-x}} &\text{với }x<1\\
\sqrt{3x^2+1} &\text{với }x\geq1.
\end{cases}\)
Tính giới hạn \(\lim\limits_{x\to1^+}f(x)\).
![]() | \(+\infty\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-3^+}\dfrac{x^2+13x+30}{\sqrt{(x+3)(x^2+5)}}\).
![]() | \(-2\) |
![]() | \(2\) |
![]() | \(0\) |
![]() | \(\dfrac{2}{\sqrt{15}}\) |
Tính giới hạn \(\lim\limits_{x\to2^+}\dfrac{x-15}{x-2}\).
![]() | \(-\infty\) |
![]() | \(+\infty\) |
![]() | \(-\dfrac{15}{2}\) |
![]() | \(1\) |
Giới hạn \(\lim\limits_{x\to-\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
![]() | \(2\) |
![]() | \(-2\) |
![]() | \(+\infty\) |
![]() | \(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
![]() | \(2\) |
![]() | \(-2\) |
![]() | \(+\infty\) |
![]() | \(-\infty\) |
Giới hạn bên trái của hàm số \(f(x)=\dfrac{|2x+1|}{2x+1}\) tại \(x_0=-\dfrac{1}{2}\) bằng
![]() | \(-1\) |
![]() | \(1\) |
![]() | \(-\dfrac{1}{2}\) |
![]() | Không tồn tại |
Giới hạn \(\lim\limits_{x\to6}\dfrac{\sqrt{x+3}-3}{x-6}\) bằng
![]() | \(0\) |
![]() | \(\dfrac{1}{6}\) |
![]() | \(\dfrac{166}{999}\) |
![]() | \(+\infty\) |
Hàm số \(f(x)=\begin{cases}\dfrac{\sqrt{1-3x+x^2}-\sqrt{1+x}}{x} &\text{khi }x\neq0\\
m &\text{khi }x=0\end{cases}\) liên tục tại \(x_0=0\) khi
![]() | \(m=4\) |
![]() | \(m=-1\) |
![]() | \(m=3\) |
![]() | \(m=-2\) |
Giới hạn \(\lim\limits_{x\to3^-}\dfrac{x^2+2x-15}{|x-3|}\) bằng
![]() | \(8\) |
![]() | \(-\infty\) |
![]() | \(-8\) |
![]() | Không tồn tại |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{1+2x^2}-x\right)\).
![]() | \(0\) |
![]() | \(+\infty\) |
![]() | \(\sqrt{2}-1\) |
![]() | \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}x\left(\sqrt{4x^2+7x}+2x\right)\).
![]() | \(4\) |
![]() | \(-\infty\) |
![]() | \(6\) |
![]() | \(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\).
![]() | \(\sqrt[3]{3}+1\) |
![]() | \(+\infty\) |
![]() | \(\sqrt[3]{3}-1\) |
![]() | \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{x^2+1}+x\right)\).
![]() | \(0\) |
![]() | \(+\infty\) |
![]() | \(\sqrt{2}-1\) |
![]() | \(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to2^-}\dfrac{|2-x|}{2x^2-5x+2}\).
![]() | \(-\infty\) |
![]() | \(+\infty\) |
![]() | \(-\dfrac{1}{3}\) |
![]() | \(\dfrac{1}{3}\) |
Tính giới hạn \(\lim\limits_{x\to(-2)^+}\dfrac{\left|3x+6\right|}{x+2}\).
![]() | \(-\infty\) |
![]() | \(3\) |
![]() | \(+\infty\) |
![]() | \(0\) |
Tính giới hạn \(\lim\limits_{x\to3}\sqrt{\dfrac{9x^2-x}{(2x-1)\left(x^4-3\right)}}\).
![]() | \(\dfrac{1}{5}\) |
![]() | \(\sqrt{5}\) |
![]() | \(\dfrac{1}{\sqrt{5}}\) |
![]() | \(5\) |
Giới hạn \(\lim\limits_{x\to-1}\dfrac{\sqrt{3x^2+1}-x}{x-1}\) bằng
![]() | \(-\dfrac{3}{2}\) |
![]() | \(\dfrac{1}{2}\) |
![]() | \(-\dfrac{1}{2}\) |
![]() | \(\dfrac{3}{2}\) |