Giới hạn \(\lim\limits_{x\to+\infty}\left(3^x-5^x\right)\) bằng
\(-1\) | |
\(-\infty\) | |
\(+\infty\) | |
Không tồn tại |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{1+2x^2}-x\right)\).
\(0\) | |
\(+\infty\) | |
\(\sqrt{2}-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(2x^3-x^2\right)\).
\(1\) | |
\(+\infty\) | |
\(-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^3+5x^2-3}{x^2+6x+3}\).
\(-2\) | |
\(+\infty\) | |
\(-\infty\) | |
\(2\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}x\left(\sqrt{4x^2+7x}+2x\right)\).
\(4\) | |
\(-\infty\) | |
\(6\) | |
\(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\).
\(\sqrt[3]{3}+1\) | |
\(+\infty\) | |
\(\sqrt[3]{3}-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{x^2+1}+x\right)\).
\(0\) | |
\(+\infty\) | |
\(\sqrt{2}-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).
\(0\) | |
\(+\infty\) | |
\(1\) | |
\(-\infty\) |
Giới hạn \(\lim\limits_{x\to-\infty}\left(x-x^3+1\right)\) bằng
\(1\) | |
\(-\infty\) | |
\(0\) | |
\(+\infty\) |
Giới hạn \(\lim\limits_{x\to1^-}\dfrac{2x-7}{x-1}\) bằng
\(0\) | |
\(\dfrac{9}{2}\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn \(\lim\limits_{x\to-\infty}\left(\sqrt{x^2+1}-\sqrt{9x^2+2x}\right)\) bằng
\(-2\) | |
\(-\infty\) | |
\(+\infty\) | |
Không tồn tại |
Giới hạn \(\lim\limits_{x\to-\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
\(2\) | |
\(-2\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
\(2\) | |
\(-2\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{1+3x-2x^2}{x^2+5}\) bằng
\(2\) | |
\(-2\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn bên trái của hàm số \(f(x)=\dfrac{|2x+1|}{2x+1}\) tại \(x_0=-\dfrac{1}{2}\) bằng
\(-1\) | |
\(1\) | |
\(-\dfrac{1}{2}\) | |
Không tồn tại |
Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
5x^2-2 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng
\(1\) | |
\(-3\) | |
\(3\) | |
Không tồn tại |
Giới hạn \(\lim\limits_{x\to2}\dfrac{x^2-3x+2}{x^3-x^2+x-6}\) bằng
\(0\) | |
\(\dfrac{1}{7}\) | |
\(\dfrac{1}{9}\) | |
Không tồn tại |
Giới hạn \(\lim\limits_{x\to1}\dfrac{x^2-3x+2}{x^2-1}\) bằng
\(0\) | |
\(-\dfrac{1}{2}\) | |
\(+\infty\) | |
Không tồn tại |
Giới hạn \(\lim\limits_{x\to1}\dfrac{x^2-3x+2}{x^2+1}\) bằng
\(0\) | |
\(-\dfrac{1}{2}\) | |
\(+\infty\) | |
Không tồn tại |
Giới hạn \(\lim\limits_{x\to-2}\sqrt{x+1}\) bằng
\(1\) | |
\(-1\) | |
\(-2\) | |
Không tồn tại |