Ngân hàng bài tập

Bài tập tương tự

A

Hàm số nào dưới đây liên tục trên tập xác định của nó?

\(f(x)=\dfrac{2x+3}{3x-2}\)
\(f(x)=\sqrt{x-2019}\)
\(f(x)=\sqrt{x+2019}\)
\(f(x)=\sqrt{x^2+2019}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Hàm số \(f(x)=\begin{cases}\dfrac{\sqrt{1-3x+x^2}-\sqrt{1+x}}{x} &\text{khi }x\neq0\\
m &\text{khi }x=0\end{cases}\) liên tục tại \(x_0=0\) khi

\(m=4\)
\(m=-1\)
\(m=3\)
\(m=-2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào sau đây liên tục trên \(\Bbb{R}\)?

\(f(x)=2x^3-2017\)
\(f(x)=\sqrt{x^2-3x+2}\)
\(f(x)=\dfrac{3x+2}{x-3}\)
\(f(x)=\tan 3x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong các phát biểu sau, phát biểu nào đúng?

Nếu hàm số \(y=f(x)\) không liên tục tại \(x_0\) thì nó có đạo hàm tại điểm đó
Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì nó không liên tục tại điểm đó
Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì nó liên tục tại điểm đó
Nếu hàm số \(y=f(x)\) liên tục tại \(x_0\) thì nó có đạo hàm tại điểm đó
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Kí hiệu $M$ và $m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2+\sqrt{4-x^2}$. Khi đó $M+m$ bằng

$\dfrac{25}{4}$
$\dfrac{15}{4}$
$4$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số nào sau đây có đúng $1$ đường tiệm cận ngang?

$y=\dfrac{\sqrt{2-x^2}}{x+3}$
$y=\dfrac{4x-3}{x^2-2x}$
$y=\dfrac{\sqrt{x^2+1}}{5x-3}$
$y=\dfrac{x^2-x}{x+1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất của hàm số $y=2\sqrt{x+2}$ trên đoạn $[-1;3]$.

$1$
$2$
$4$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số $f(x)$ được gọi là liên tục trên khoảng $(a;b)$ nếu

$f(x)$ liên tục tại $2$ điểm thuộc khoảng $(a;b)$
$f(x)$ liên tục tại mọi điểm thuộc khoảng $(a;b)$
$f(x)$ liên tục tại $4$ điểm thuộc khoảng $(a;b)$
$f(x)$ liên tục tại $a$ và liên tục tại $b$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=\dfrac{2x+3}{(x-1)(x-2)}$. Chọn khẳng định đúng.

$f(x)$ không liên tục tại $x_0=3$
$f(x)$ liên tục tại $x_0=3$
$f(x)$ liên tục tại $x_0=1$
$f(x)$ liên tục tại $x_0=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho $\lim\limits_{x\to-\infty}\left(\sqrt{ax^2-2x}+bx\right)=11$. Tính $Q=b-a$.

$Q=\dfrac{17}{121}$
$Q=\dfrac{5}{121}$
$Q=-\dfrac{13}{121}$
$Q=\dfrac{10}{121}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ xác định trên khoảng $(a;b)$. Hàm số $f(x)$ được gọi là liên tục tại điểm $x_0$ thuộc khoảng $(a;b)$ nếu

$\lim\limits_{x\to x_0}f(x)=2f\big(x_0\big)$
$\lim\limits_{x\to x_0^-}f(x)=f\big(x_0\big)$
$\lim\limits_{x\to x_0}f(x)=f\big(x_0\big)$
$\lim\limits_{x\to x_0^+}f(x)=f\big(x_0\big)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\begin{cases}4x-7\text{ khi }x\ne3\\ 2m+1\text{ khi }x=3\end{cases}$. Xác định $m$ để hàm số $f(x)$ liên tục tại $x=3$.

$m=3$
$m=-3$
$m=2$
$m=-2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số $y=\dfrac{x^2-4x+3}{x+1}$ không liên tục tại điểm nào sau đây?

$x=1$
$x=3$
$x=-3$
$x=-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\begin{cases}\dfrac{4x^2+3x-1}{x+1} &\text { khi }x\neq-1\\ 2m+1 &\text { khi }x=-1\end{cases}$. Với giá trị nào của $m$ thì hàm số đã cho liên tục tại điểm $x=-1$?

$m=2$
$m=-3$
$m=\dfrac{1}{2}$
$m=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có đồ thị được biểu diễn trong hệ trục tọa độ $Oxy$ như hình vẽ bên.

Mệnh đề nào sau đây sai?

Hàm số $y=f(x)$ liên tục tại điểm $x=3$
Hàm số $y=f(x)$ liên tục tại điểm $x=-1$
Hàm số $y=f(x)$ liên tục trên $\mathbb{R}$
Hàm số $y=f(x)$ gián đoạn tại điểm $x=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị hàm số nào sau đây có tiệm cận ngang?

$y=\dfrac{1-x^2}{x}$
$y=\dfrac{\sqrt{x^2-1}}{x}$
$y=\dfrac{x^2-1}{x}$
$y=\dfrac{\sqrt{1-x^2}}{x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất của hàm số $y=2\sqrt{x+2}$ trên đoạn $[-1;3]$.

$1$
$2$
$4$
$-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là

$(2;+\infty)$
$\mathbb{R}\setminus\{2\}$
$\mathbb{R}$
$[2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là

$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$
$\{k2\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=\dfrac{2x-\sqrt{mx^2+1}}{x-1}$ có đúng hai đường tiệm cận ngang.

$m<0$
$0<m<3$ hoặc $m>3$
$m>0$
$m=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự