Đường tròn \(\left(\mathscr{C}\right)\) đi qua ba điểm \(O(0;0)\), \(A(8;0)\), \(B(0;6)\) có phương trình là
\((x-4)^2+(y-3)^2=25\) | |
\((x+4)^2+(y+3)^2=25\) | |
\((x-4)^2+(y-3)^2=5\) | |
\((x+4)^2+(y+3)^2=5\) |
Cho tam giác \(ABC\) có \(A(1;-2)\), \(B(-3;0)\), \(C(2;-2)\). Đường tròn ngoại tiếp tam giác \(ABC\) có phương trình là
\(x^2+y^2+3x+8y+18=0\) | |
\(x^2+y^2-3x-8y-18=0\) | |
\(x^2+y^2-3x-8y+18=0\) | |
\(x^2+y^2+3x+8y-18=0\) |
Cho tam giác \(ABC\) có \(A(-2;4)\), \(B(5;5)\), \(C(6;-2)\). Đường tròn ngoại tiếp tam giác \(ABC\) có phương trình là
\(x^2+y^2-2x-y+20=0\) | |
\((x-2)^2+(y-1)^2=20\) | |
\(x^2+y^2-4x-2y+20=0\) | |
\(x^2+y^2-4x-2y-20=0\) |
Đường tròn \((\mathscr{C})\) đi qua ba điểm \(A(-3;-1)\), \(B(-1;3)\), \(C(-2;2)\) có phương trình là
\(x^2+y^2-4x+2y-20=0\) | |
\(x^2+y^2+2x-y-20=0\) | |
\((x+2)^2+(y-1)^2=25\) | |
\((x-2)^2+(y+1)^2=20\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(-1;2\right)\), \(B\left(-2;3\right)\) và có tâm \(I\) thuộc đường thẳng \(\Delta\colon3x-y+10=0\). Phương trình của đường tròn \(\left(\mathscr{C}\right)\) là
\(\left(x+3\right)^2+\left(y-1\right)^2=\sqrt{5}\) | |
\(\left(x-3\right)^2+\left(y+1\right)^2=\sqrt{5}\) | |
\(\left(x-3\right)^2+\left(y+1\right)^2=5\) | |
\(\left(x+3\right)^2+\left(y-1\right)^2=5\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(1;1\right)\), \(B\left(5;3\right)\) và có tâm \(I\) thuộc trục hoành có phương trình là
\(\left(x+4\right)^2+y^2=10\) | |
\(\left(x-4\right)^2+y^2=10\) | |
\(\left(x-4\right)^2+y^2=\sqrt{10}\) | |
\(\left(x+4\right)^2+y^2=\sqrt{10}\) |
Cho phương trình \(x^2+y^2-2\left(m+1\right)x+4y-1=0\) (1). Với giá trị nào của \(m\) để (1) là phương trình đường tròn có bán kính nhỏ nhất?
\(m=2\) | |
\(m=-1\) | |
\(m=1\) | |
\(m=-2\) |
Cho phương trình \(x^2+y^2-2x+2my+10=0\) (1). Có bao nhiêu giá trị \(m\) nguyên dương không vượt quá \(10\) để (1) là phương trình của đường tròn?
Không có | |
\(6\) | |
\(7\) | |
\(8\) |
Tìm tọa độ tâm \(I\) của đường tròn đi qua ba điểm \(A\left(0;4\right)\), \(B\left(2;4\right)\), \(C\left(4;0\right)\).
\(I\left(0;0\right)\) | |
\(I\left(1;0\right)\) | |
\(I\left(3;2\right)\) | |
\(I\left(1;1\right)\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;-3\right)\) và tiếp xúc với trục \(Oy\) có phương trình là
\(\left(x+2\right)^2+\left(y-3\right)^2=4\) | |
\(\left(x+2\right)^2+\left(y-3\right)^2=9\) | |
\(\left(x-2\right)^2+\left(y+3\right)^2=4\) | |
\(\left(x-2\right)^2+\left(y+3\right)^2=9\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;3\right)\) và tiếp xúc với trục \(Ox\) có phương trình là
\(\left(x-2\right)^2+\left(y-3\right)^2=9\) | |
\(\left(x-2\right)^2+\left(y-3\right)^2=4\) | |
\(\left(x-2\right)^2+\left(y-3\right)^2=3\) | |
\(\left(x+2\right)^2+\left(y+3\right)^2=9\) |
Tìm điều kiện để phương trình $$x^2+y^2-8x+10y+m=0$$là phương trình đường tròn có bán kính bằng \(7\).
\(m=4\) | |
\(m=8\) | |
\(m=-8\) | |
\(m=-4\) |
Tìm điều kiện của tham số \(m\) để phương trình $$x^2+y^2-2mx-4(m-2)y+6-m=0$$là phương trình đường tròn.
\(m\in\mathbb{R}\) | |
\(m\in(-\infty;1)\cup(2;+\infty)\) | |
\(m\in(-\infty;1]\cup[2;+\infty)\) | |
\(m\in\left(-\infty;\dfrac{1}{3}\right)\cup(2;+\infty)\) |
Tìm điều kiện của tham số \(m\) để phương trình $$x^2+y^2+2mx+2(m-1)y+2m^2=0$$là phương trình đường tròn.
\(m<\dfrac{1}{2}\) | |
\(m\leq\dfrac{1}{2}\) | |
\(m>1\) | |
\(m=1\) |
Để phương trình \(x^2+y^2-2x+4y-m=0\) là phương trình đường tròn thì
\(m\geq-5\) | |
\(m>-5\) | |
\(m<5\) | |
\(m\leq5\) |
Đường tròn \((\mathscr{C})\) tâm \(I(-1;2)\) và tiếp xúc với đường thẳng \(\Delta\colon x-2y+7=0\) có phương trình là
\((x+1)^2+(y-2)^2=\dfrac{4}{25}\) | |
\((x+1)^2+(y-2)^2=\dfrac{4}{5}\) | |
\((x+1)^2+(y-2)^2=\dfrac{2}{\sqrt{5}}\) | |
\((x+1)^2+(y-2)^2=5\) |
Đường tròn \((\mathscr{C})\) tâm \(I(-2;1)\) và tiếp xúc với đường thẳng \(\Delta\colon3x-4y+5=0\) có phương trình là
\((x+2)^2+(y-1)^2=1\) | |
\((x+2)^2+(y-1)^2=\dfrac{1}{25}\) | |
\((x-2)^2+(y+1)^2=1\) | |
\((x+2)^2+(y-1)^2=4\) |
Đường tròn đường kính \(AB\) với \(A(1;1)\), \(B(7;5)\) có phương trình là
\(x^2+y^2-8x-6y+12=0\) | |
\(x^2+y^2+8x-6y-12=0\) | |
\(x^2+y^2+8x+6y+12=0\) | |
\(x^2+y^2-8x-6y-12=0\) |
Đường tròn đường kính \(AB\) với \(A(3;-1)\), \(B(1;-5)\) có phương trình là
\((x+2)^2+(y-3)^2=5\) | |
\((x+1)^2+(y+2)^2=17\) | |
\((x-2)^2+(y+3)^2=\sqrt{5}\) | |
\((x-2)^2+(y+3)^2=5\) |
Đường tròn \((\mathscr{C})\) tâm \(I(-2;3)\) và đi qua điểm \(M(2;-3)\) có phương trình là
\((x+2)^2+(y-3)^2=\sqrt{52}\) | |
\((x-2)^2+(y+3)^2=52\) | |
\(x^2+y^2+4x-6y-57=0\) | |
\(x^2+y^2+4x-6y-39=0\) |