Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
$12$ | |
$16$ | |
$6$ | |
$10$ |
Biết rằng tích phân \(\displaystyle\int\limits_{0}^{1}(2x+1)\mathrm{e}^x\mathrm{\,d}x=a+b\mathrm{e}\) với \(a,\,b\in\mathbb{Z}\). Tích \(ab\) bằng
\(1\) | |
\(-1\) | |
\(-15\) | |
\(20\) |
Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?
$a+2b=0$ | |
$2a-b=0$ | |
$a-b=0$ | |
$a+b=0$ |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
\(a+b=0\) | |
\(a-b=0\) | |
\(a+2b=0\) | |
\(2a-b=0\) |
Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
\(2\) | |
\(-2\) | |
\(-4\) | |
\(3\) |
Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng
\(-\dfrac{3}{2}\) | |
\(3\) | |
\(1\) | |
\(\dfrac{3}{2}\) |
Biết \(\displaystyle\int(x+3)\cdot\mathrm{e}^{-3x+1}\mathrm{\,d}x=-\dfrac{1}{m}\mathrm{e}^{-3x+1}(3x+n)+C\) với \(m,\,n\) là các số nguyên. Tính tổng \(S=m+n\).
\(10\) | |
\(1\) | |
\(9\) | |
\(19\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)\) với \(a,\,b\) là các số nguyên dương. Tính \(T=a+b\).
\(T=7\) | |
\(T=10\) | |
\(T=6\) | |
\(T=8\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
\(25\) | |
\(41\) | |
\(20\) | |
\(34\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
\(-5\) | |
\(7\) | |
\(12\) | |
\(6\) |
Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?
\(a+b+1=0\) | |
\(a+3b+1=0\) | |
\(a-2b=0\) | |
\(a+b=-2\) |
Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng
\(3\) | |
\(4\) | |
\(5\) | |
\(6\) |
Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).
\(S=2\) | |
\(S=-2\) | |
\(S=5\) | |
\(S=10\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{\mathrm{\,d}x}{x^2+3x+2}=a\ln2+b\ln3\) với \(a\), \(b\) là các số nguyên. Mệnh đề nào sau đây đúng?
\(a+2b=0\) | |
\(a-2b=0\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
$-77$ | |
$-17$ | |
$103$ | |
$43$ |
Biết tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{2x+3}{2-x}\mathrm{d}x=a\ln2+b$ ($a,\,b\in\mathbb{Z}$), giá trị của $a$ bằng
$7$ | |
$2$ | |
$3$ | |
$1$ |
Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là
$10$ | |
$7$ | |
$6$ | |
$8$ |
Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.
$P=32$ | |
$P=130$ | |
$P=2$ | |
$P=16$ |
Cho hàm số $y=x^4-4x^2+m$. Tìm $m$ để đồ thị của hàm số cắt trục hoành tại $4$ điểm phân biệt sao cho hình phẳng giới hạn bởi đồ thị với trục hoành có diện tích phần phía trên trục hoành bằng diện tích phần phía dưới trục hoành. Khi đó $m=\dfrac{a}{b}$ với $\dfrac{a}{b}$ là phân số tối giản. Tính $a+2b$.
$37$ | |
$38$ | |
$0$ | |
$29$ |
Tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{1}{\sqrt{x+1}}\mathrm{\,d}x=a+b\sqrt{2}$ với $a,\,b\in\mathbb{Q}$. Khi đó $a-b$ bằng
$4$ | |
$-4$ | |
$1$ | |
$-1$ |