Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon\left(x-2\right)^2+\left(y-1\right)^2=25\), biết tiếp tuyến song song với đường thẳng \(d\colon4x+3y+14=0\).
![]() | \(4x+3y+14=0\) hoặc \(4x+3y-36=0\) |
![]() | \(4x+3y+14=0\) |
![]() | \(4x+3y-36=0\) |
![]() | \(4x+3y-14=0\) hoặc \(4x+3y-36=0\) |
Viết phương trình tiếp tuyến của đường tròn $$\left(\mathscr{C}\right)\colon x^2+y^2+4x+4y-17=0$$biết tiếp tuyến song song với đường thẳng \(d\colon3x-4y-2020=0\).
![]() | \(3x-4y+23=0\) hoặc \(3x-4y-27=0\) |
![]() | \(3x-4y+23=0\) hoặc \(3x-4y+27=0\) |
![]() | \(3x-4y-23=0\) hoặc \(3x-4y+27=0\) |
![]() | \(3x-4y-23=0\) hoặc \(3x-4y-27=0\) |
Viết phương trình tiếp tuyến \(d\) của đường tròn $$\left(\mathscr{C}\right)\colon x^2+y^2-3x-y=0$$tại điểm \(N(1;-1)\).
![]() | \(x+3y-2=0\) |
![]() | \(x-3y+4=0\) |
![]() | \(x-3y-4=0\) |
![]() | \(x+3y+2=0\) |
Viết phương trình tiếp tuyến của đường tròn $$\left(\mathscr{C}\right)\colon(x-2)^2+(y+4)^2=25$$biết tiếp tuyến vuông góc với đường thẳng \(d\colon3x-4y+5=0\).
![]() | \(4x+3y+5=0\) hoặc \(4x+3y+45=0\) |
![]() | \(4x+3y+5=0\) hoặc \(4x+3y+3=0\) |
![]() | \(4x+3y+29=0\) |
![]() | \(4x+3y+29=0\) hoặc \(4x+3y-21=0\) |
Viết phương trình tiếp tuyến của đường tròn $$\left(\mathscr{C}\right)\colon(x-3)^2+(y+1)^2=5$$biết tiếp tuyến song song với đường thẳng \(d\colon2x+y+7=0\).
![]() | \(2x+y+1=0\) hoặc \(2x+y-1=0\) |
![]() | \(2x+y=0\) hoặc \(2x+y-10=0\) |
![]() | \(2x+y+10=0\) hoặc \(2x+y-10=0\) |
![]() | \(2x+y=0\) hoặc \(2x+y+10=0\) |
Viết phương trình tiếp tuyến \(d\) của đường tròn $$\left(\mathscr{C}\right)\colon(x+2)^2+(y+2)^2=25$$tại điểm \(M(2;1)\).
![]() | \(d\colon-y+1=0\) |
![]() | \(d\colon4x+3y+14=0\) |
![]() | \(d\colon3x-4y-2=0\) |
![]() | \(d\colon4x+3y-11=0\) |
Tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon(x-2)^2+(y+3)^2=16\) tại điểm \(N(2;1)\) là
![]() | \(d_2\colon\begin{cases}x=2\\ y=1-2t\end{cases}\) |
![]() | \(d_3\colon y=-3\) |
![]() | \(d_4\colon x=1\) |
![]() | \(d_1\colon y=1\) |
Với giá trị nào của \(m\) thì hai đường thẳng \(\Delta_1\colon mx+y-19=0\) và \(\Delta_2\colon(m-1)x+(m+1)y-20=0\) vuông góc?
![]() | \(m\in\Bbb{R}\) |
![]() | \(m=2\) |
![]() | \(m\in\varnothing\) |
![]() | \(m=\pm1\) |
Đường thẳng \(d\) đi qua điểm \(M(-1;2)\) và vuông góc với đường thẳng \(\Delta\colon2x+y-3=0\) có phương trình tổng quát là
![]() | \(2x+y=0\) |
![]() | \(x-2y-3=0\) |
![]() | \(x+y-1=0\) |
![]() | \(x-2y+5=0\) |
Đường thẳng \(\Delta\) đi qua điểm \(S\left(5;1\right)\) và vuông góc với đường thẳng \(d\colon 4x-3y+5=0\). \(\Delta\) có phương trình là
![]() | \(\begin{cases}x=5+3t\\ y=1+4t\end{cases}\) |
![]() | \(\begin{cases}x=5+4t\\ y=1-3t\end{cases}\) |
![]() | \(4x-3y+17=0\) |
![]() | \(4x-3y-17=0\) |
Có bao nhiêu đường thẳng đi qua gốc tọa độ \(O\) và tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2-2x+4y-11=0\)?
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
![]() | \(3\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(-1;2\right)\), \(B\left(-2;3\right)\) và có tâm \(I\) thuộc đường thẳng \(\Delta\colon3x-y+10=0\). Phương trình của đường tròn \(\left(\mathscr{C}\right)\) là
![]() | \(\left(x+3\right)^2+\left(y-1\right)^2=\sqrt{5}\) |
![]() | \(\left(x-3\right)^2+\left(y+1\right)^2=\sqrt{5}\) |
![]() | \(\left(x-3\right)^2+\left(y+1\right)^2=5\) |
![]() | \(\left(x+3\right)^2+\left(y-1\right)^2=5\) |
Cho đường tròn \(\left(\mathscr{C}\right)\colon(x-1)^2+(y+2)^2=8\). Viết phương trình tiếp tuyến \(d\) của \(\left(\mathscr{C}\right)\) tại điểm \(A(3;-4)\).
![]() | \(d\colon x+y+1=0\) |
![]() | \(d\colon x-2y-11=0\) |
![]() | \(d\colon x-y-7=0\) |
![]() | \(d\colon x-y+7=0\) |
Đường tròn \((\mathscr{C})\) tâm \(I(-2;1)\) và tiếp xúc với đường thẳng \(\Delta\colon3x-4y+5=0\) có phương trình là
![]() | \((x+2)^2+(y-1)^2=1\) |
![]() | \((x+2)^2+(y-1)^2=\dfrac{1}{25}\) |
![]() | \((x-2)^2+(y+1)^2=1\) |
![]() | \((x+2)^2+(y-1)^2=4\) |
Cặp đường thẳng nào sau đây vuông góc với nhau?
![]() | \(\delta_1\colon\begin{cases}x=t\\ y=-1-2t\end{cases}\) và \(\delta_2\colon2x+y+1=0\) |
![]() | \(\lambda_1\colon x-2=0\) và \(\lambda_2\colon\begin{cases}x=t\\ y=0\end{cases}\) |
![]() | \(\gamma_1\colon2x-y+3=0\) và \(\gamma_2\colon x-2y+1=0\) |
![]() | \(\varphi_1\colon2x-y+3=0\) và \(\varphi_2\colon4x-2y+1=0\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-4)^2+(y+3)^2+(z+6)^2=50$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Có bao nhiêu điểm $M$ thuộc trục hoành, với hoành độ là số nguyên, mà từ $M$ kẻ được đến $(S)$ hai tiếp tuyến cùng vuông góc với $d$?
![]() | $29$ |
![]() | $33$ |
![]() | $55$ |
![]() | $28$ |
Có bao nhiêu đường thẳng đi qua điểm \(N\left(-2;0\right)\) tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\colon\left(x-2\right)^2+\left(y+3\right)^2=4\)?
![]() | \(0\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | Vô số |
Cho đường tròn \(\left(\mathscr{C}\right)\colon\left(x-3\right)^2+\left(y+3\right)^2=1\). Qua điểm \(M\left(4;-3\right)\) có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn \(\left(\mathscr{C}\right)\)?
![]() | \(0\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | Vô số |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(1;1\right)\), \(B\left(3;5\right)\) và có tâm \(I\) thuộc trục tung có phương trình là
![]() | \(x^2+y^2-8y+6=0\) |
![]() | \(x^2+\left(y-4\right)^2=6\) |
![]() | \(x^2+\left(y+4\right)^2=6\) |
![]() | \(x^2+y^2+4y+6=0\) |
Đường tròn \(\left(\mathscr{C}\right)\) có tâm \(I\left(2;-3\right)\) và tiếp xúc với trục \(Oy\) có phương trình là
![]() | \(\left(x+2\right)^2+\left(y-3\right)^2=4\) |
![]() | \(\left(x+2\right)^2+\left(y-3\right)^2=9\) |
![]() | \(\left(x-2\right)^2+\left(y+3\right)^2=4\) |
![]() | \(\left(x-2\right)^2+\left(y+3\right)^2=9\) |