Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t \\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
$(1;2;3)$ | |
$(2;2;3)$ | |
$(1;2;-3)$ | |
$(2;-2;-3)$ |
Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t\\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
Điểm $Q(2;2;3)$ | |
Điểm $N(2;-2;-3)$ | |
Điểm $M(1;2;-3)$ | |
Điểm $P(1;2;3)$ |
Trong không gian $Oxyz$, cho đường thẳng $\Delta\colon\begin{cases}x=3-3t\\ y=1+2t\\ z=5t\end{cases}$. Điểm nào dưới đây thuộc đường thẳng $\Delta$?
$N(0;3;5)$ | |
$M(-3;2;5)$ | |
$P(3;1;5)$ | |
$Q(6;-1;5)$ |
Trong không gian $Oxyz$, cho điểm $A(2;0;0)$ và đường thẳng $BC$ có phương trình là $\begin{cases} x=-t\\ y=3+t\\ z=1+t \end{cases}$. Tìm hình chiếu vuông góc của điểm $A$ lên đường thẳng $BC$.
$(2;1;1)$ | |
$(2;-1;-1)$ | |
$(-2;1;-1)$ | |
$(2;1;-1)$ |
Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A(-1;1;6)\) trên đường thẳng \(\Delta\colon\begin{cases}x=2+t\\ y=1-2t\\ z=2t\end{cases}\) là
\(M(3;-1;2)\) | |
\(H(11;-17;18)\) | |
\(K(2;1;0)\) | |
\(N(1;3;-2)\) |
Trong không gian $Oxyz$, tọa độ hình chiếu vuông góc của điểm $M(1;0;1)$ lên đường thẳng $\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ là
$\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)$ | |
$(2;4;6)$ | |
$(0;0;0)$ | |
$\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)$ |
Trong không gian $Oxyz$, cho đường thẳng $(d)\colon\begin{cases} x=1-t\\ y=-2+2t\\ z=1+t \end{cases}$. Vectơ nào là vectơ chỉ phương của $d$?
$\overrightarrow{u}=(-1;-2;1)$ | |
$\overrightarrow{u}=(1;2;1)$ | |
$\overrightarrow{u}=(1;-2;1)$ | |
$\overrightarrow{u}=(-1;2;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=2+t\\ y=1-2t\\ z=-1+3t \end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u_1}=(2;1;-1)$ | |
$\overrightarrow{u_2}=(1;2;3)$ | |
$\overrightarrow{u_3}=(1;-2;3)$ | |
$\overrightarrow{u_4}=(2;1;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=1-t\\ y=-2+2t\\ z=1+t\end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u}=\left(1;-2;1\right)$ | |
$\overrightarrow{u}=\left(1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;-2;1\right)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-3}{-1}=\dfrac{y-2}{3}=\dfrac{z+1}{-2}$. Điểm nào sau đây không thuộc $d$?
$Q\left(-3;-2;-1\right)$ | |
$M\left(4;-1;1\right)$ | |
$N\left(2;5;-3\right)$ | |
$P\left(3;2;-1\right)$ |
Trong không gian $Oxyz$, cho đường thẳng $d$ có phương trình $\begin{cases} x=2+t\\ y=3-t\\ z=-2+t \end{cases}$ ($t\in\mathbb{R}$). Hỏi đường thẳng $d$ đi qua điểm nào sau đây?
$C(-2;-3;2)$ | |
$B(2;3;-2)$ | |
$D(2;3;2)$ | |
$A(1;-1;1)$ |
Trong không gian $Oxyz$, điểm đối xứng với điểm $A(1;-3;1)$ qua đường thẳng $d\colon\dfrac{x-2}{-1}=\dfrac{y-4}{2}=\dfrac{z+1}{3}$ có tọa độ là
$(10;6;-10)$ | |
$(-10;-6;10)$ | |
$(4;9;-6)$ | |
$(-4;-9;6)$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
$(4;-1;6)$ | |
$(4;6;1)$ | |
$(-4;6;-1)$ | |
$(4;1;6)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian \(Oxyz\), cho điểm \(M(1;0;4)\) và đường thẳng \(d\colon\dfrac{x}{1}=\dfrac{y-1}{-1}=\dfrac{x+1}{2}\). Tìm hình chiếu vuông góc \(H\) của \(M\) lên đường thẳng \(d\).
\(H(2;-1;3)\) | |
\(H(1;0;1)\) | |
\(H(-2;3;0)\) | |
\(H(0;1;-1)\) |
Trong không gian \(Oxyz\), điểm nào dưới đây thuộc đường thẳng \(d\colon\dfrac{x+2}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{2}\)?
\(Q(-2;1;-2)\) | |
\(M(-2;-2;1)\) | |
\(N(2;-1;2)\) | |
\(P(1;1;2)\) |
Trong không gian \(Oxyz\), điểm nàọ dưới đây thuộc đường thẳng \(d\colon\dfrac{x+1}{-1}=\dfrac{y-2}{3}=\dfrac{z-1}{3}\)?
\(P\left(-1;2;1\right)\) | |
\(Q\left(1;-2;-1\right)\) | |
\(N\left(-1;3;2\right)\) | |
\(M\left(1;2;1\right)\) |
Trong không gian \(Oxyz\), tọa độ hình chiếu vuông góc của điểm \(M(1;0;1)\) lên đường thẳng \(\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) là
\((2;4;6)\) | |
\(\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\) | |
\((0;0;0)\) | |
\(\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là
$\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |