Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z-4=(1+i)|z|-(4+3z)i$. Giá trị của biểu thức $P=a-3b$ bằng
$P=-2$ | |
$P=6$ | |
$P=2$ | |
$P=-6$ |
Cho các số phức $z_1,\,z_2,\,z_3$ thỏa mãn $\big|z_1\big|=\big|z_2\big|=2\big|z_3\big|=2$ và $8\big(z_1+z_2\big)z_3=3z_1z_2$. Gọi $A,\,B,\,C$ lần lượt là các điểm biểu diễn của $z_1,\,z_2,\,z_3$ trên mặt phẳng tọa độ. Diện tích tam giác $ABC$ bằng
$\dfrac{\sqrt{55}}{32}$ | |
$\dfrac{\sqrt{55}}{16}$ | |
$\dfrac{\sqrt{55}}{24}$ | |
$\dfrac{\sqrt{55}}{8}$ |
Trong mặt phẳng $Oxy$ cho hai điểm $A,\,B$ là điểm biểu diễn cho các số phức $z$ và $w=(1+i)z$. Biết tam giác $OAB$ có diện tích bằng $8$. Mô-đun của số phức $w-z$ bằng
$2$ | |
$2\sqrt{2}$ | |
$4\sqrt{2}$ | |
$4$ |
Cho số phức $z$ thỏa điều kiện $|z|=10$ và $w=(6+8i)\cdot\overline{z}+(1-2i)^2$. Tập hợp điểm biểu diễn cho số phức $w$ là đường tròn có tâm là
$I(-3;-4)$ | |
$I(3;4)$ | |
$I(6;8)$ | |
$I(1;-2)$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?
$4$ | |
$1$ | |
$3$ | |
$2$ |
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\) | |
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\) | |
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\) | |
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\) |
Cho số phức \(z=x+yi\) (\(x,\,y\in\mathbb{R}\)) có môđun nhỏ nhất thỏa mãn điều kiện \(|z-4-2i|=|z-2|\). Tính \(P=x^2+y^2\).
\(10\) | |
\(16\) | |
\(8\) | |
\(32\) |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
\(150^\circ\) | |
\(90^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) |
Với các số phức \(z\) thỏa mãn \(\left|z-2+i\right|=4\), tập hợp điểm biểu diễn các số phức \(z\) là một đường tròn. Tìm bán kính \(R\) của đường tròn đó.
\(R=8\) | |
\(R=16\) | |
\(R=2\) | |
\(R=4\) |
Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).
Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\) | |
Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\) | |
Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\) | |
Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\) |
Xét các số phức $z$ thỏa mãn điều kiện $\left|\dfrac{-2-3i}{3-2i}z+1\right|=1$. Gọi $m, M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức $P=|z|$. Tính $S=2023-3M+2m$.
$S=2021$ | |
$S=2017$ | |
$S=2019$ | |
$S=2023$ |
Cho hai số phức $z_1=3-i$ và $z_2=-2+5i$. Khi đó mô-đun của số phức $z=z_1+z_2$ bằng
$\sqrt{17}$ | |
$2\sqrt{17}$ | |
$\sqrt{39}$ | |
$\sqrt{10}$ |
Xét số phức $z$ thỏa mãn $|z+3-2i|+|z-3+i|=3\sqrt{5}$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=|z+2|+|z-1-3i|$. Khi đó
$M=\sqrt{26}+2\sqrt{5}$, $m=3\sqrt{2}$ | |
$M=\sqrt{17}+\sqrt{5}$, $m=\sqrt{2}$ | |
$M=\sqrt{26}+2\sqrt{5}$, $m=\sqrt{2}$ | |
$M=\sqrt{17}+\sqrt{5}$, $m=3\sqrt{2}$ |
Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.
$I(-3;-5)$, $R=\sqrt{5}$ | |
$I(3;-5)$, $R=\sqrt{10}$ | |
$I(-3;5)$, $R=\sqrt{10}$ | |
$I(3;5)$, $R=10$ |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(-1;-\dfrac{2}{3}\right)$ | |
$\left(-1;\dfrac{2}{3}\right)$ | |
$\left(1;-\dfrac{2}{3}\right)$ | |
$\left(1;\dfrac{2}{3}\right)$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.
Phần ảo của số phức $(1+i)z$ bằng
$7$ | |
$-7$ | |
$-1$ | |
$1$ |
Tập hợp các số phức $z$ thỏa mãn $|z+1-2i|=3$ là đường tròn có tâm
$I(-1;2)$ | |
$I(-1;-2)$ | |
$I(1;-2)$ | |
$I(1;2)$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?
Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$ | |
$z^2=|z|^2$ | |
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$ | |
Mô-đun của $z$ là một số thực dương |
Cho số phức $z$ thỏa mãn $z=\dfrac{\left(1+\sqrt{3}i\right)^3}{1-i}$. Tìm mô-đun của $iz$.
$4$ | |
$4\sqrt{2}$ | |
$8\sqrt{2}$ | |
$8$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
$P(3;-12)$ | |
$Q(3;12)$ | |
$M(14;-5)$ | |
$N(-3;12)$ |