Trong không gian \(Oxyz\), cho vectơ \(\vec{a}=(2;-2;-4)\), \(\vec{b}=(1;-1;1)\). Mệnh đề nào dưới đây sai?
\(\vec{a}+\vec{b}=(3;-3;-3)\) | |
\(\vec{a}\) và \(\vec{b}\) cùng phương | |
\(\left|\vec{b}\right|=\sqrt{3}\) | |
\(\vec{a}\bot\vec{b}\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(-1;1;0)\), \(\vec{b}=(1;1;0)\), \(\vec{c}=(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?
\(\left|\vec{a}\right|=\sqrt{2}\) | |
\(\vec{c}\bot\vec{b}\) | |
\(\left|\vec{c}\right|=\sqrt{3}\) | |
\(\vec{a}\bot\vec{b}\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?
\(\left|\vec{a}\right|=\left|\vec{b}\right|\) | |
\(\vec{a},\,\vec{b}\) cùng phương | |
\(\vec{a}\bot\vec{b}\) | |
\(\vec{a}\cdot\vec{b}=0\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\) cho điểm \(H(1;2;3)\). Viết phương trình mặt phẳng \((P)\) đi qua điểm \(H\) và cắt các trục tọa độ tại ba điểm phân biệt \(A,\,B,\,C\) sao cho \(H\) là trực tâm của tam giác \(ABC\).
\((P)\colon x+\dfrac{y}{2}+\dfrac{z}{3}=1\) | |
\((P)\colon x+2y+3z-14=0\) | |
\((P)\colon x+y+z-6=0\) | |
\((P)\colon\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(3;-2;m)\) và \(\vec{b}=(2;m;-1)\). Tìm giá trị của \(m\) để \(\vec{a}\) và \(\vec{b}\) vuông góc với nhau.
\(m=2\) | |
\(m=1\) | |
\(m=-2\) | |
\(m=-1\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(2;3;4)\) và \(B(3;0;1)\). Khi đó độ dài vectơ \(\overrightarrow{AB}\) là
\(\sqrt{19}\) | |
\(19\) | |
\(\sqrt{13}\) | |
\(13\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-2;-1)\), \(B(1;4;3)\). Độ dài đoạn thẳng \(AB\) bằng
\(2\sqrt{13}\) | |
\(\sqrt{6}\) | |
\(3\) | |
\(2\sqrt{3}\) |
Cho tam giác \(ABC\) cân tại \(A\). Phát biểu nào sau đây đúng?
\(\overrightarrow{AB}=\overrightarrow{AC}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{AC}\right|\) | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng phương |
Gọi \(C\) là trung điểm của đoạn thẳng \(AB\). Hãy chọn khẳng định đúng trong các khẳng định sau:
\(\overrightarrow{CA}=\overrightarrow{CB}\) | |
\(\overrightarrow{AB},\,\overrightarrow{AC}\) cùng hướng | |
\(\overrightarrow{AB},\,\overrightarrow{CB}\) ngược hướng | |
\(\left|\overrightarrow{AC}\right|=\overrightarrow{CB}\) |
Cho bốn điểm phân biệt \(A,\,B,\,C,\,D\) thỏa mãn \(\overrightarrow{AB}=\overrightarrow{CD}\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}\) cùng hướng với \(\overrightarrow{CD}\) | |
\(\overrightarrow{AB}\) cùng phương với \(\overrightarrow{CD}\) | |
\(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{CD}\right|\) | |
\(ABCD\) là hình bình hành |
Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.
$m=7$; $n=\dfrac{3}{4}$ | |
$m=1$; $n=0$ | |
$m=4$; $n=-3$ | |
$m=7$; $n=-\dfrac{3}{4}$ |
Trong không gian $Oxyz$, độ dài của vectơ $\overrightarrow{u}=(1;-2;2)$ là
$3$ | |
$5$ | |
$1$ | |
$9$ |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là
$m=-1$ và $n=\dfrac{4}{3}$ | |
$m=-1$ và $n=\dfrac{3}{4}$ | |
$m=1$ và $n=\dfrac{4}{3}$ | |
$m=-3$ và $n=4$ |
Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).
\(T=3\) | |
\(T=6\) | |
\(T=0\) | |
\(T=9\) |
Cho vectơ \(\overrightarrow{a}=\left(1;3;4\right)\), tìm vectơ \(\overrightarrow{b}\) cùng phương với vectơ \(\overrightarrow{a}\).
\(\overrightarrow{b}=\left(-2;6;8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;-8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;8\right)\) | |
\(\overrightarrow{b}=\left(2;-6;-8\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\) |
Trong không gian với hệ toạ độ \(Oxyz\) cho \(A\left(x_A;y_A;z_A\right)\), \(B\left(x_B;y_B;z_B\right)\). Công thức nào dưới đây là đúng.
\(\overrightarrow{AB}=\left(x_A-x_B;y_A-y_B;z_A-z_B\right)\) | |
\(\overrightarrow{BA}=\left(x_A+x_B;y_A+y_B;z_A+z_B\right)\) | |
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2}\) | |
\(\left|\overrightarrow{AB}\right|=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) | |
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) | |
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) | |
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(M(3;0;0)\), \(N(0;0;4)\). Tính độ dài đoạn thẳng \(MN\).
\(MN=7\) | |
\(MN=1\) | |
\(MN=5\) | |
\(MN=10\) |