Trong không gian \(Oxyz\), cho ba điểm \(A\left(2;-1;5\right)\), \(B\left(5;-5;7\right)\) và \(M\left(x;y;1\right)\). Với giá trị nào của \(x\) và \(y\) thì \(3\) điểm \(A,\,B,\,M\) thẳng hàng?
\(x=4\) và \(y=7\) | |
\(x=-4\) và \(y=-7\) | |
\(x=4\) và \(y=-7\) | |
\(x=-4\) và \(y=7\) |
Trong không gian $Oxyz$, cho hai mặt phẳng $(P)\colon mx+2y+nz+1=0$ và $(Q)\colon x-my+nz+2=0$ $(m,\,n\in\mathbb{R})$ cùng vuông góc với mặt phẳng $(\alpha)\colon 4x-y-6z+3=0$. Tính $m+n$.
$m+n=0$ | |
$m+n=2$ | |
$m+n=1$ | |
$m+n=3$ |
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
$cd=3$ | |
$cd=0$ | |
$cd=12$ | |
$cd=6$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là
$-3$ | |
$-1$ | |
$1$ | |
$0$ |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là
$m=-1$ và $n=\dfrac{4}{3}$ | |
$m=-1$ và $n=\dfrac{3}{4}$ | |
$m=1$ và $n=\dfrac{4}{3}$ | |
$m=-3$ và $n=4$ |
Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).
\(a+b=1\) | |
\(a+b=-1\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Không không gian \(Oxyz\), cho ba điểm \(A(2;5;3)\), \(B(3;7;4)\) và \(C(x;y;6)\) thẳng hàng. Giá trị của biểu thức \(x+y\) là
\(16\) | |
\(14\) | |
\(18\) | |
\(20\) |
Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.
$m=7$; $n=\dfrac{3}{4}$ | |
$m=1$; $n=0$ | |
$m=4$; $n=-3$ | |
$m=7$; $n=-\dfrac{3}{4}$ |
Trong không gian $Oxyz$, cho hai mặt phẳng $(P)\colon2x+my-z+1=0$ và $(Q)\colon x+3y+(2m+3)z-2=0$. Giá trị của $m$ để $(P)\perp(Q)$ là
$m=0$ | |
$m=2$ | |
$m=1$ | |
$m=-1$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;1;0)$, $B(0;2;1)$, $C(1;3;-1)$. Điểm $M(a;b;c)\in(Oxy)$ sao cho $\big|2\overrightarrow{MA}+3\overrightarrow{MB}-4\overrightarrow{MC}\big|$ đạt giá trị nhỏ nhất. Mệnh đề nào sau đây đúng?
$a+b+c=3$ | |
$a+b+c=-3$ | |
$a+b+c=-4$ | |
$a+b+c=10$ |
Trong không gian $Oxyz$, gọi mặt phẳng $(P)\colon7x+by+cz+d=0$ (với $b,\,c,\,d\in\mathbb{R}$, $c< 0$) đi qua điểm $A(1;3;5)$. Biết mặt phẳng $(P)$ song song với trục $Oy$ và khoảng cách từ gốc tọa độ đến mặt phẳng $(P)$ bằng $3\sqrt{2}$. Tính $T=b+c+d$.
$T=61$ | |
$T=78$ | |
$T=7$ | |
$T=-4$ |
Trong không gian $Oxyz$, gọi $M(a;b;c)$ là giao điểm của đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-3}{-1}=\dfrac{z-2}{1}$ và mặt phẳng $(P)\colon2x+3y-4z+4=0$. Tính $T=a+b+c$.
$T=\dfrac{3}{2}$ | |
$T=6$ | |
$T=4$ | |
$T=-\dfrac{5}{2}$ |
Trong không gian $Oxyz$, cho hai điểm $A(2;1;3)$ và $B(6;5;5)$. Xét khối nón $(N)$ có đỉnh $A$, đường tròn đáy nằm trên mặt cầu đường kính $AB$. Khi $(N)$ có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của $(N)$ có phương trình dạng $2x+by+cz+d=0$. Giá trị của $b+c+d$ bằng
$-21$ | |
$-12$ | |
$-18$ | |
$-15$ |
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta\colon\dfrac{x+4}{2}=\dfrac{y+2}{1}=\dfrac{z-3}{3}\) và mặt phẳng \((P)\colon4x+2y+(m-1)z+13=0\). Tìm giá trị của \(m\) để \((P)\) vuông góc với \(\Delta\).
\(m=-7\) | |
\(m=7\) | |
\(m=-\dfrac{7}{3}\) | |
\(m=\dfrac{7}{3}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
\(-2\) | |
\(-3\) | |
\(0\) | |
\(3\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2x+4y-4z-m=0\) có bán kính \(R=5\). Tính giá trị của \(m\).
\(m=-4\) | |
\(m=4\) | |
\(m=16\) | |
\(m=-16\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x+my+(m-1)z+1=0\) và \((Q)\colon x+y+2z=0\). Tập hợp tất cả các giá trị \(m\) để hai mặt phẳng này không song song là
\((0;+\infty)\) | |
\(\mathbb{R}\setminus\{-1;1;2\}\) | |
\((-\infty;3)\) | |
\(\mathbb{R}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((\alpha)\colon x-y+nz-3=0\) và \((\beta)\colon2x+my+2z+6=0\). Với giá trị nào của \(m,\,n\) thì \((\alpha)\) và \((\beta)\) song song với nhau?
\(m=-2,\;n=1\) | |
\(m=1,\;n=-2\) | |
\(m=-\dfrac{1}{2},\;n=1\) | |
\(m=1,\;n=-\dfrac{1}{2}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-3y+2z+1=0\) và \((Q)\colon(2m-1)x+m(1-2m)y+(2m-4)z+14=0\). Tìm \(m\) để \((P)\) và \((Q)\) vuông góc với nhau.
\(m=1\) hoặc \(m=-\dfrac{3}{2}\) | |
\(m=-1\) hoặc \(m=-\dfrac{3}{2}\) | |
\(m=2\) | |
\(m=\dfrac{3}{2}\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(1;-2;0)\), \(B(1;0;-1)\), \(C(0;-1;2)\) và \(D(0;m;p)\) cùng thuộc một mặt phẳng. Đẳng thức nào sau đây là đúng?
\(2m+p=0\) | |
\(m+p=1\) | |
\(m+2p=3\) | |
\(2m-3p=0\) |