Trong không gian với hệ tọa độ \(Oxyz\) cho \(A(-1;2;4)\), \(B(-1;1;4)\), \(C(0;0;4)\). Tìm số đo của \(\widehat{ABC}\).
![]() | \(135^\circ\) |
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
![]() | \(60^\circ\) |
Trong không gian \(Oxyz\), cho ba điểm \(A(-2;1;0)\), \(B(-3;0;4)\), \(C(0;7;3)\). Tính \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)\).
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\sqrt{798}}{57}\) |
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{14\sqrt{118}}{354}\) |
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{\sqrt{798}}{57}\) |
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{7\sqrt{118}}{177}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).
![]() | \(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\) |
![]() | \(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\) |
![]() | \(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\) |
![]() | \(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(-3;4;0)\), \(\vec{b}=(5;0;12)\). Tính cosin góc giữa \(\vec{a}\) và \(\vec{b}\).
![]() | \(\dfrac{3}{13}\) |
![]() | \(-\dfrac{3}{13}\) |
![]() | \(-\dfrac{5}{6}\) |
![]() | \(\dfrac{5}{6}\) |
Trong không gian $Oxyz$, gọi $\varphi$ là góc tạo bởi hai vectơ $\overrightarrow{a}=(3;-1;2)$ và $\overrightarrow{b}=(1;1;-1)$. Mệnh đề nào dưới đây đúng?
![]() | $\varphi=30^{\circ}$ |
![]() | $\varphi=45^{\circ}$ |
![]() | $\varphi=90^{\circ}$ |
![]() | $\varphi=60^{\circ}$ |
Trong không gian $Oxyz$, cho hình hộp $ABCD.A'B'C'D'$ có $A(1;0;1)$, $B(2;1;2)$, $D(1;-1;1)$ và $A'(1;1;-1)$. Giá trị của $\cos\left(\overrightarrow{AC'},\overrightarrow{B'D'}\right)$ bằng
![]() | $\dfrac{\sqrt{3}}{3}$ |
![]() | $\dfrac{\sqrt{2}}{3}$ |
![]() | $-\dfrac{\sqrt{3}}{3}$ |
![]() | $-\dfrac{\sqrt{2}}{3}$ |
Giá trị cosin của góc giữa hai vectơ \(\overrightarrow{a}=(4;3;1)\) và \(\overrightarrow{b}=(0;2;3)\) là
![]() | \(\dfrac{5\sqrt{26}}{26}\) |
![]() | \(\dfrac{9\sqrt{2}}{26}\) |
![]() | \(\dfrac{5\sqrt{2}}{26}\) |
![]() | \(\dfrac{9\sqrt{13}}{26}\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\) đều khác vectơ-không. Gọi \(\alpha\) là góc giữa hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Câu nào sai trong các câu sau:
![]() | \(\overrightarrow{a}\bot\overrightarrow{b}\Leftrightarrow a_1b_1+a_2b_2+a_3b_3=0\) |
![]() | \(\cos\alpha=\dfrac{a_1b_1+a_2b_2+a_3b_3}{\left(a_1^2+a_2^2+a_3^2\right)\cdot\left(b_1^2+b_2^2+b_3^2\right)}\) |
![]() | \(\cos\alpha=\dfrac{\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|}\) |
![]() | \(\cos\alpha=\dfrac{a_1b_1+a_2b_2+a_3b_3}{\sqrt{a_1^2+a_2^2+a_3^2}\cdot\sqrt{b_1^2+b_2^2+b_3^2}}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(-1;1;0)\), \(\vec{v}=(0;-1;0)\). Góc giữa \(\vec{u}\) và \(\vec{v}\) có số đo bằng
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
![]() | \(135^\circ\) |
![]() | \(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
![]() | \(\cos A=\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=\dfrac{1}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong không gian $Oxyz$, xét mặt cầu $(S)$ có tâm $I(4;8;12)$ và bán kính $R$ thay đổi. Có bao nhiêu giá trị nguyên của $R$ sao cho ứng với mỗi giá trị đó, tồn tại hai tiếp tuyến của $(S)$ trong mặt phẳng $(Oyz)$ mà hai tiếp tuyến đó cùng đi qua $O$ và góc giữa chúng không nhỏ hơn $60^\circ$?
![]() | $6$ |
![]() | $2$ |
![]() | $10$ |
![]() | $5$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng
![]() | $\dfrac{7\sqrt{55}}{55}$ |
![]() | $\dfrac{\sqrt{55}}{55}$ |
![]() | $0$ |
![]() | $\dfrac{-3\sqrt{55}}{11}$ |
Trong không gian $Oxyz$, gọi $\alpha$ là góc giữa hai mặt phẳng $(P)\colon x-\sqrt{3}y+2z+1=0$ và mặt phẳng $(Oxy)$. Khẳng định nào sau đây đúng?
![]() | $\alpha=45^{\circ}$ |
![]() | $\alpha=30^{\circ}$ |
![]() | $\alpha=60^{\circ}$ |
![]() | $\alpha=90^{\circ}$ |
Trong không gian $Oxyz$, góc giữa hai mặt phẳng $(Oxy)$ và $(Oyz)$ bằng
![]() | $30^{\circ}$ |
![]() | $45^{\circ}$ |
![]() | $60^{\circ}$ |
![]() | $90^{\circ}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-5}{2}$ và mặt phẳng $(P)\colon2x+y+z-3=0$. Đường thẳng $\Delta$ đi qua điểm $A(2;-1;3)$, cắt đường thẳng $d$ và tạo với mặt phẳng $(P)$ một góc $30^\circ$ có phương trình là
![]() | $\dfrac{x+2}{22}=\dfrac{y-1}{-13}=\dfrac{z+3}{8}$ |
![]() | $\dfrac{x-2}{1}=\dfrac{y+1}{-1}=\dfrac{z-3}{2}$ |
![]() | $\dfrac{x-2}{2}=\dfrac{y+1}{1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-2}{-11}=\dfrac{y+1}{5}=\dfrac{z-3}{2}$ |
Trong không gian $Oxyz$, cho hai mặt phẳng $(P)$ và $(Q)$ lần lượt có vectơ pháp tuyến $\overrightarrow{n}$ và $\overrightarrow{n'}$. Gọi $\varphi$ là góc giữa hai mặt phẳng $(P)$ và $(Q)$. Chọn công thức đúng?
![]() | $\cos\varphi=\dfrac{\left|\overrightarrow{n'}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ |
![]() | $\cos\varphi=\dfrac{\overrightarrow{n'}\cdot\overrightarrow{n}}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ |
![]() | $\sin\varphi=\dfrac{\left|\overrightarrow{n'}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ |
![]() | $\sin\varphi=\dfrac{\overrightarrow{n'}\cdot\overrightarrow{n}}{\left|\overrightarrow{n'}\right|\cdot\left|\overrightarrow{n}\right|}$ |
Trong không gian $Oxyz$, gọi $(P)$ là mặt phẳng chứa trục $Oy$ và tạo với mặt phẳng $y+z+1=0$ một góc $60^\circ$. Phương trình mặt phẳng $(P)$ là
![]() | $\left[\begin{array}{l}x-y=0\\ x+y=0\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x-z=0\\ x+z=0\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x-z-1=0\\ x-z=0\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x-2z=0\\ x+z=0\end{array}\right.$ |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng
![]() | \(-2\) |
![]() | \(13\) |
![]() | \(-5\) |
![]() | \(12\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
![]() | Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) |
![]() | \(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) |
![]() | \(\vec{m}\cdot\vec{n}=-1\) |
![]() | \(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) có \(A(0;2;0)\), \(B(2;0;0)\), \(C\left(0;0;\sqrt{2}\right)\) và \(D(0;-2;0)\). Tính số đo góc của hai mặt phẳng \((ABC)\) và \((ACD)\).
![]() | \(30^\circ\) |
![]() | \(45^\circ\) |
![]() | \(60^\circ\) |
![]() | \(90^\circ\) |