Trong không gian $Oxyz$, tọa độ hình chiếu vuông góc của điểm $M(1;0;1)$ lên đường thẳng $\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ là
$\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)$ | |
$(2;4;6)$ | |
$(0;0;0)$ | |
$\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z+3}{-2}$. Điểm nào dưới đây thuộc $d$?
$P(1;2;3)$ | |
$Q(1;2;-3)$ | |
$N(2;1;2)$ | |
$M(2;-1;-2)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-3}{-1}=\dfrac{y-2}{3}=\dfrac{z+1}{-2}$. Điểm nào sau đây không thuộc $d$?
$Q\left(-3;-2;-1\right)$ | |
$M\left(4;-1;1\right)$ | |
$N\left(2;5;-3\right)$ | |
$P\left(3;2;-1\right)$ |
Trong không gian $Oxyz$, điểm đối xứng với điểm $A(1;-3;1)$ qua đường thẳng $d\colon\dfrac{x-2}{-1}=\dfrac{y-4}{2}=\dfrac{z+1}{3}$ có tọa độ là
$(10;6;-10)$ | |
$(-10;-6;10)$ | |
$(4;9;-6)$ | |
$(-4;-9;6)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian \(Oxyz\), cho điểm \(M(1;0;4)\) và đường thẳng \(d\colon\dfrac{x}{1}=\dfrac{y-1}{-1}=\dfrac{x+1}{2}\). Tìm hình chiếu vuông góc \(H\) của \(M\) lên đường thẳng \(d\).
\(H(2;-1;3)\) | |
\(H(1;0;1)\) | |
\(H(-2;3;0)\) | |
\(H(0;1;-1)\) |
Trong không gian \(Oxyz\), điểm nào dưới đây thuộc đường thẳng \(d\colon\dfrac{x+2}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{2}\)?
\(Q(-2;1;-2)\) | |
\(M(-2;-2;1)\) | |
\(N(2;-1;2)\) | |
\(P(1;1;2)\) |
Trong không gian \(Oxyz\), điểm nàọ dưới đây thuộc đường thẳng \(d\colon\dfrac{x+1}{-1}=\dfrac{y-2}{3}=\dfrac{z-1}{3}\)?
\(P\left(-1;2;1\right)\) | |
\(Q\left(1;-2;-1\right)\) | |
\(N\left(-1;3;2\right)\) | |
\(M\left(1;2;1\right)\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{3}=\dfrac{y+2}{2}=\dfrac{z-3}{-4}\). Điểm nào sau đây không thuộc đường thẳng \(d\)?
\(Q(-2;-4;7)\) | |
\(N(4;0;-1)\) | |
\(M(1;-2;3)\) | |
\(P(7;2;1)\) |
Trong không gian \(Oxyz\), tọa độ hình chiếu vuông góc của điểm \(M(1;0;1)\) lên đường thẳng \(\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) là
\((2;4;6)\) | |
\(\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\) | |
\((0;0;0)\) | |
\(\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)\) |
Trong không gian $Oxyz$, phương trình đường thẳng $d$ đi qua điểm $M(2;1;-1)$ và có một vectơ chỉ phương $\overrightarrow{u}=(1;-2;3)$ là
$\dfrac{x-1}{2}=\dfrac{y+2}{1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-2}{1}=\dfrac{y-1}{-2}=\dfrac{z+1}{3}$ | |
$\dfrac{x+1}{2}=\dfrac{y-2}{1}=\dfrac{z+3}{-1}$ | |
$\dfrac{x+2}{1}=\dfrac{y+1}{-2}=\dfrac{z-1}{3}$ |
Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t \\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
$(1;2;3)$ | |
$(2;2;3)$ | |
$(1;2;-3)$ | |
$(2;-2;-3)$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
$\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, viết phương trình đường thẳng đi qua hai điểm $P(1;1;-1)$, $Q(2;3;2)$.
$\dfrac{x-1}{2}=\dfrac{y-1}{3}=\dfrac{z+1}{2}$ | |
$\dfrac{x+1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z+1}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z-3}{-1}$ |
Trong không gian $Oxyz$, cho ba điểm $A(1;2;-1)$, $B(3;0;1)$ và $C(2;2;-2)$. Đường thẳng đi qua $A$ và vuông góc với mặt phẳng $(ABC)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-2}{-2}=\dfrac{z+1}{3}$ | |
$\dfrac{x+1}{1}=\dfrac{y+2}{2}=\dfrac{z-1}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z-1}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z+1}{1}$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
$\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ | |
$\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ | |
$\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |
Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$ | |
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$ |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |