Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.
Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?
$\left(-1;0\right)$ | |
$\left(-2;-1\right)$ | |
$\left(1;2\right)$ | |
$\left(0;1\right)$ |
Cho hàm số \(y=\dfrac{ax-1}{bx+c}\) có đồ thị như hình trên. Tính giá trị biểu thức \(T=a+2b+3c\).
\(T=1\) | |
\(T=2\) | |
\(T=3\) | |
\(T=4\) |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.
Khi đó $a+b-c$ bằng
$-2$ | |
$-1$ | |
$1$ | |
$0$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{0\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên.
Tập hợp tất cả các giá trị của tham số $m$ sao cho phương trình $f(x)=m$ có ba nghiệm phân biệt là
$(-\infty;2)$ | |
$\{-1;2\}$ | |
$[-1;2]$ | |
$(-1;2)$ |
Bảng biến thiên trong hình bên là của hàm số nào trong các hàm số đã cho dưới đây?
$y=\dfrac{3-x}{x+2}$ | |
$y=\dfrac{3x+8}{x+2}$ | |
$y=\dfrac{3x-3}{x+2}$ | |
$y=\dfrac{3-3x}{x+2}$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ và có bảng biến thiên như sau :
Mệnh đề nào sau đây đúng?
Hàm số đồng biến trên khoảng $\left(2;+\infty\right)$ | |
Hàm số nghịch biến trên khoảng $\left(-\infty;2\right)$ | |
Hàm số nghịch biến trên các khoảng $\left(-\infty;1\right)$ và $\left(1;+\infty\right)$ | |
Hàm số nghịch biến trên $\mathbb{R}$ |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f(x)-2-m=0\) có \(3\) nghiệm phân biệt?
\(5\) | |
\(4\) | |
\(3\) | |
\(2\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-1=m\) có đúng \(2\) nghiệm.
\(-2< m<-1\) | |
\(m=-2\) hoặc \(m\geq-1\) | |
\(m=-1\) hoặc \(m>0\) | |
\(m=-2\) hoặc \(m>-1\) |
Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.
Tìm tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có \(3\) nghiệm phân biệt.
\([-2;2)\) | |
\((-2;2)\) | |
\((-2;2]\) | |
\([2;+\infty)\) |
Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\setminus\{0\}\), liên tục trên từng khoảng xác định và có bảng biến thiên như hình.
Phương trình \(f(x)=m\) với \(m\in(-1;2)\) có bao nhiêu nghiệm?
\(3\) | |
\(1\) | |
\(0\) | |
\(2\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f(x)-m=0\) có \(3\) nghiệm phân biệt.
\(-3\leq m\leq2\) | |
\(-3< m<2\) | |
\(-4\leq m\leq2\) | |
\(-4< m<2\) |
Cho hàm số \(y=f(x)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Tập hợp các giá trị thực của tham số \(m\) để phương trình \(f(x)=m\) có đúng một nghiệm là
\((-\infty;-2)\cup(2;+\infty)\) | |
\((-\infty;-2]\cup[2;+\infty)\) | |
\((-2;2)\) | |
\([-2;2]\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
\(9\) | |
\(10\) | |
Vô số | |
\(0\) |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.
Kết luận nào sau đây đúng?
$ad>0$, $bc< 0$ | |
$ad< 0$, $bc>0$ | |
$ad< 0$, $bc< 0$ | |
$ad>0$, $bc>0$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
$3$ | |
$2$ | |
$4$ | |
$5$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
$y=-x^3+3x+1$ | |
$y=\dfrac{x-1}{x+1}$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^4-x^2+1$ |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.
Khẳng định nào sau đây đúng?
$\max\limits_{[-1;3]}f(x)=f(0)$ | |
$\max\limits_{[-1;3]}f(x)=f(3)$ | |
$\max\limits_{[-1;3]}f(x)=f(-1)$ | |
$\max\limits_{[-1;3]}f(x)=f(2)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số đã cho là
$0$ | |
$3$ | |
$2$ | |
$1$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:
Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là
$5$ | |
$3$ | |
$6$ | |
$4$ |
Cho hàm số $f(x)$ có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
$x=-2$ | |
$x=3$ | |
$x=5$ | |
$x=-3$ |