Cho tam thức bậc hai \(f(x)=-3x^2+2x+5\). Phát biểu nào sau đây là sai?
\(a<0\) | |
\(\Delta>0\) | |
Phương trình \(f(x)=0\) có \(2\) nghiệm | |
\(f(x)\) dương trên \(\left[-1;\dfrac{5}{3}\right]\) |
Cho \(f(x)=ax^2+bx+c\) với \(a\neq0\), có \(\Delta=b^2-4ac\). Điều kiện để \(f(x)\leq0,\,\forall x\in\mathbb{R}\) là
\(\begin{cases}a>0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a>0\\ \Delta<0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta<0\end{cases}\) |
Cho \(f(x)=ax^2+bx+c\) với \(a\neq0\), có \(\Delta=b^2-4ac\). Điều kiện để \(f(x)<0,\,\forall x\in\mathbb{R}\) là
\(\begin{cases}a>0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a>0\\ \Delta<0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta<0\end{cases}\) |
Cho \(f(x)=ax^2+bx+c\) với \(a\neq0\), có \(\Delta=b^2-4ac\). Điều kiện để \(f(x)\geq0,\,\forall x\in\mathbb{R}\) là
\(\begin{cases}a>0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a>0\\ \Delta<0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta<0\end{cases}\) |
Cho \(f(x)=ax^2+bx+c\) với \(a\neq0\), có \(\Delta=b^2-4ac\). Điều kiện để \(f(x)>0,\,\forall x\in\mathbb{R}\) là
\(\begin{cases}a>0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta\leq0\end{cases}\) | |
\(\begin{cases}a>0\\ \Delta<0\end{cases}\) | |
\(\begin{cases}a<0\\ \Delta<0\end{cases}\) |
Để tam thức \(f(x)=ax^2+bx+c\) \((a\neq0)\) luôn cùng dấu với \(a\) với mọi \(x\in\Bbb{R}\) thì
\(\Delta<0\) | |
\(\Delta=0\) | |
\(\Delta>0\) | |
\(\Delta\geq0\) |
Cho hàm số $y=f(x)=x^3-3x^2+12$. Tìm $x$ để $f'(x)< 0$.
$x\in(-2;0)$ | |
$x\in(-\infty;-2)\cup(0;+\infty)$ | |
$x\in(0;2)$ | |
$x\in(-\infty;0)\cup(2;+\infty)$ |
Tìm $m$ để biểu thức $f\left(x\right)=x^2-\left(m+2\right)x+8m+1$ không âm với mọi $x$.
$m>28$ | |
$0\leq m\leq28$ | |
$m<1$ | |
$0< m<28$ |
Biểu thức $f\left(x\right)=3x^2+2\left(2m-1\right)x+m+4$ dương với mọi $x$ khi
$-1<m<\dfrac{11}{4}$ | |
$-\dfrac{11}{4}<m<1$ | |
$-\dfrac{11}{4}\leq m\leq1$ | |
$\left[\begin{array}{l}m<-1\\ m>\dfrac{11}{4}\end{array}\right.$ |
Tìm tập xác định của hàm số $y=\sqrt{\dfrac{x^2+4x+5}{2x^2+3x+1}}$.
$\left(-\infty;-1\right]\cup\left[-\dfrac{1}{2};+\infty\right)$ | |
$\left[-1;-\dfrac{1}{2}\right]$ | |
$\left(-\infty;-1\right)\cup\left(-\dfrac{1}{2};+\infty\right)$ | |
$\left(-1;-\dfrac{1}{2}\right)$ |
Hàm số $y=2x^2+2x+5$ nhận giá trị dương khi
$x\in\left(0;+\infty\right)$ | |
$x\in\left(-2;+\infty\right)$ | |
$x\in\Bbb{R}$ | |
$x\in\left(-\infty;2\right)$ |
Bất phương trình \((m-1)x^2-2(m-1)x+m+3>0\) nghiệm đúng với mọi \(x\in\mathbb{R}\) khi và chỉ khi
\(m\in(2;+\infty)\) | |
\(m\in[1;+\infty)\) | |
\(m\in(-2;7)\) | |
\(m\in(1;+\infty)\) |
Tập nghiệm của bất phương trình \(\dfrac{3x-1}{x^2-4}\geq0\) là tập hợp nào sau đây?
\(T=\left(-2;\dfrac{1}{3}\right]\cup(2;+\infty)\) | |
\(P=(-\infty;-2)\cup(2;+\infty)\) | |
\(Q=(-2;2)\) | |
\(S=(-\infty;-2)\cup\left[\dfrac{1}{3};2\right)\) |
Tập nghiệm của bất phương trình $$x^2+\left(\sqrt{3}+\sqrt{2}\right)x+\sqrt{6}\leq0$$là đoạn \([m;n]\). Tính \(m^2-n^2\).
\(m^2-n^2=\sqrt{3}-\sqrt{2}\) | |
\(m^2-n^2=\sqrt{2}-\sqrt{3}\) | |
\(m^2-n^2=1\) | |
\(m^2-n^2=-1\) |
Tập nghiệm của bất phương trình \(\dfrac{3x}{4-x^2}\geq1\) là
\((-4;-2)\cup(1;2)\) | |
\((-\infty;-4]\cup(-2;1]\cup(2;+\infty)\) | |
\([-4;-2)\cup[1;2)\) | |
\([-4;-2]\cup[1;2]\) |
Tập nghiệm của bất phương trình \(\dfrac{-3x^2+2x+5}{x-1}\leq0\) là
\((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
\((-1;1)\cup\left(\dfrac{5}{3};+\infty\right)\) | |
\([-1;1]\cup\left[\dfrac{5}{3};+\infty\right)\) | |
\([-1;1)\cup\left[\dfrac{5}{3};+\infty\right)\) |
Bất phương trình \(-3x^2+2x+5<0\) có tập nghiệm là
\(\left(-1;\dfrac{5}{3}\right)\) | |
\(\left(-\infty;-1\right)\cup\left(\dfrac{5}{3};+\infty\right)\) | |
\(\left[-1;\dfrac{5}{3}\right]\) | |
\((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) |
Biểu thức \(f(x)=-3x^2+2x+5\) nhận giá trị âm trên khoảng nào sau đây?
\(\left(-1;\dfrac{5}{3}\right)\) | |
\(\left(-\infty;-1\right)\cup\left(\dfrac{5}{3};+\infty\right)\) | |
\(\left[-1;\dfrac{5}{3}\right]\) | |
\((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) |