Tìm chu kỳ tuần hoàn \(\mathscr{T}\) của hàm số $$y=\sin\dfrac{x}{2}-\tan\left(2x+\dfrac{\pi}{4}\right).$$
\(\mathscr{T}=4\pi\) | |
\(\mathscr{T}=\pi\) | |
\(\mathscr{T}=3\pi\) | |
\(\mathscr{T}=2\pi\) |
Tìm chu kì $T_{0}$ của hàm số $f(x)=\tan2x$.
$T_{0}=\pi$ | |
$T_{0}=\dfrac{\pi}{4}$ | |
$T_{0}=2\pi$ | |
$T_{0}=\dfrac{\pi}{2}$ |
Chu kì của hàm số \(f\left(x\right)=\tan\dfrac{x}{2}\) là
\(T=4\pi\) | |
\(T=\dfrac{\pi}{2}\) | |
\(T=\pi\) | |
\(T=2\pi\) |
Tìm chu kỳ tuần hoàn \(\mathscr{T}\) của hàm số $$y=3\cos(2x+1)-2\sin\left(\dfrac{x}{2}-3\right).$$
\(\mathscr{T}=4\pi\) | |
\(\mathscr{T}=\pi\) | |
\(\mathscr{T}=6\pi\) | |
\(\mathscr{T}=3\pi\) |
Tìm chu kỳ tuần hoàn \(\mathscr{T}\) của hàm số $$y=\sin\left(2x+\dfrac{\pi}{3}\right)+2\cos\left(3x-\dfrac{\pi}{4}\right).$$
\(\mathscr{T}=2\pi\) | |
\(\mathscr{T}=\pi\) | |
\(\mathscr{T}=3\pi\) | |
\(\mathscr{T}=4\pi\) |
Tìm chu kỳ tuần hoàn \(\mathscr{T}\) của hàm số $$y=\cos3x+\cos5x.$$
\(\mathscr{T}=\pi\) | |
\(\mathscr{T}=3\pi\) | |
\(\mathscr{T}=2\pi\) | |
\(\mathscr{T}=5\pi\) |
Tìm chu kỳ tuần hoàn \(\mathscr{T}\) của hàm số $$y=\cos2x+\sin\dfrac{x}{2}.$$
\(\mathscr{T}=4\pi\) | |
\(\mathscr{T}=\pi\) | |
\(\mathscr{T}=2\pi\) | |
\(\mathscr{T}=\dfrac{\pi}{2}\) |
Tìm chu kỳ tuần hoàn \(\mathscr{T}\) của hàm số \(y=\tan3\pi x\).
\(\mathscr{T}=\dfrac{\pi}{3}\) | |
\(\mathscr{T}=\dfrac{4}{3}\) | |
\(\mathscr{T}=\dfrac{2\pi}{3}\) | |
\(\mathscr{T}=\dfrac{1}{3}\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan x+C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) |
Tìm tập xác định của hàm số $y=\cot\dfrac{x}{2}$.
$\mathbb{R}\setminus\left\{k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}$ |
Tìm tập giá trị của hàm số $y=\cot x$.
$\mathbb{R}$ | |
$\left[-1;1\right]$ | |
$\mathbb{R}\setminus\left\{k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,\,k\in\mathbb{Z}\right\}$ |
Trong các hàm số $y=\sin x$, $y=\cos x$, $y=\tan x$, $y=\cot x$, có bao nhiêu hàm số tuần hoàn với chu kì $\pi$?
$2$ | |
$3$ | |
$4$ | |
$1$ |
Hàm số $y=\sin2x$ là hàm số tuần hoàn với chu kỳ là
$3\pi$ | |
$\dfrac{\pi}{2}$ | |
$2\pi$ | |
$\pi$ |
Xác định chu kỳ của hàm số $y=\sin x$.
$2\pi$ | |
$\dfrac{3\pi}{2}$ | |
$\dfrac{\pi}{2}$ | |
$\pi$ |
Tìm điều kiện xác định của hàm số $y=\tan2x$.
$x\neq\dfrac{\pi}{8}+k\dfrac{\pi}{2}$, $k\in\mathbb{Z}$ | |
$x\neq\dfrac{\pi}{4}+k\pi$, $k\in\mathbb{Z}$ | |
$x\neq\dfrac{\pi}{2}+k\pi$, $k\in\mathbb{Z}$ | |
$x\neq\dfrac{\pi}{4}+k\dfrac{\pi}{2}$, $k\in\mathbb{Z}$ |
Tính đạo hàm của hàm số $y=\cot3x$.
$y'=-\dfrac{3}{\sin^2x}$ | |
$y'=\dfrac{3}{\sin^23x}$ | |
$y'=-\dfrac{3}{\sin^33x}$ | |
$y'=-\dfrac{3}{\sin^23x}$ |
Hàm số $y=\cot x$ có đạo hàm là
$y'=-\dfrac{1}{\cos^2x}$ | |
$y'=-\dfrac{1}{\sin^2x}$ | |
$y'=\tan x$ | |
$y'=\dfrac{1}{\sin^2x}$ |
Đạo hàm của hàm số $y=\tan\left(2x+1\right)$ là
$\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
$-\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
$\dfrac{1}{\cos^2\left(2x+1\right)}$ | |
$\dfrac{2}{\sin^2\left(2x+1\right)}$ |
Tìm đạo hàm của hàm số $y=\tan\left(\dfrac{\pi}{4}-x\right)$.
$y'=-\dfrac{1}{\cos^2\left(\dfrac{\pi}{4}-x\right)}$ | |
$y'=\dfrac{1}{\cos^2\left(\dfrac{\pi}{4}-x\right)}$ | |
$y'=\dfrac{1}{\sin^2\left(\dfrac{\pi}{4}-x\right)}$ | |
$y'=-\dfrac{1}{\sin^2\left(\dfrac{\pi}{4}-x\right)}$ |