Ngân hàng bài tập

Bài tập tương tự

S

Cho tam giác \(ABC\) có trọng tâm \(G\), điểm \(N\) được xác định bởi hệ thức \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{BC}\). Hãy biểu diễn vectơ \(\overrightarrow{AC}\) theo hai vectơ \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\).

\(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\)
\(\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AG}+\dfrac{1}{2}\overrightarrow{AN}\)
\(\overrightarrow{AC}=\dfrac{4}{3}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\)
\(\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AG}-\dfrac{1}{2}\overrightarrow{AN}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\) có trọng tâm \(G\). Hãy phân tích vectơ \(\overrightarrow{AG}\) theo hai vectơ \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\).

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)
\(\overrightarrow{AG}=-\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)
\(\overrightarrow{AG}=-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BC}\)
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BC}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) đều cạnh \(a\). Tích vô hướng \(\overrightarrow{AB}\cdot\overrightarrow{AC}\) bằng

\(2a\)
\(\dfrac{a^2}{2}\)
\(a^2\)
\(-\dfrac{a^2}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian, cho tứ diện $ABCD$ có trọng tâm $S$. Gọi $G$ là trọng tâm tam giác $BCD$, $M$ và $N$ lần lượt là trung điểm của $AB$, $CD$. Mệnh đề nào sau đây là sai?

$S$ là trung điểm đoạn $MN$
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$
$S$ nằm trên đoạn $AG$ sao cho $SA=3SG$
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian, điểm $S$ là trọng tâm của tam giác $ABC$ nếu

$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=\overrightarrow{0}$
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{SC}$
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{0}$
$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AS}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tứ diện $ABCD$ có $G$ là trọng tâm tam giác $BCD$. Mệnh đề nào sau đây không đúng?

$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AG}$
$\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}$
$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$
$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}-3\overrightarrow{AG}=\overrightarrow{0}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\) cho điểm \(H(1;2;3)\). Viết phương trình mặt phẳng \((P)\) đi qua điểm \(H\) và cắt các trục tọa độ tại ba điểm phân biệt \(A,\,B,\,C\) sao cho \(H\) là trực tâm của tam giác \(ABC\).

\((P)\colon x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
\((P)\colon x+2y+3z-14=0\)
\((P)\colon x+y+z-6=0\)
\((P)\colon\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?

Tứ giác \(ABCD\) là hình bình hành
\(G(9;7)\) là trọng tâm tam giác \(BCD\)
\(\overrightarrow{AB}=\overrightarrow{CD}\)
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn \(\overrightarrow{MA}=\overrightarrow{MB}+\overrightarrow{MC}\). Khẳng định nào sau đây đúng?

\(A,\,B,\,C\) thẳng hàng
\(AM\) là phân giác trong của góc \(\widehat{BAC}\)
\(A,\,M\) và trọng tâm tam giác \(ABC\) thẳng hàng
\(\overrightarrow{AM}+\overrightarrow{BC}=\vec{0}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\). Có bao nhiêu điểm \(M\) thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\)?

\(1\)
\(2\)
\(0\)
Vô số
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\). Gọi \(M\) là điểm trên cạnh \(BC\) sao cho \(MB=3MC\). Hãy phân tích vectơ \(AM\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\).

\(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{AM}=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\dfrac{1}{4}\overrightarrow{AB}-\dfrac{3}{4}\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tam giác \(ABC\) đều, cạnh \(a\), có \(I,\,J,\,K\) lần lượt là trung điểm các cạnh \(BC,\,CA,\,AB\). Tính giá trị của $$\left|\overrightarrow{AI}+\overrightarrow{BJ}+\overrightarrow{CK}\right|.$$

\(3a\)
\(\dfrac{3a\sqrt{3}}{2}\)
\(0\)
\(\dfrac{a\sqrt{3}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết \(G\) là trọng tâm tam giác \(ABC\). Mệnh đề nào sau đây đúng?

\(\overrightarrow{AG}+\overrightarrow{BG}=\overrightarrow{CG}\)
\(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{CG}\)
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{CG}\)
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{GC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có trọng tâm \(G\), \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây sai?

\(\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\)
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\)
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=-3\overrightarrow{MG}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có \(G\) là trọng tâm. Mệnh đề nào sau đây sai?

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\)
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\)
\(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có \(G\) là trọng tâm và \(I\) là trung điểm cạnh \(BC\). Đẳng thức nào sau đây đúng?

\(\overrightarrow{GA}=2\overrightarrow{GI}\)
\(\overrightarrow{IG}=-\dfrac{1}{3}\overrightarrow{IA}\)
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GI}\)
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\), \(G\) là trọng tâm. Khẳng định nào sau đây đúng?

\(\overrightarrow{AG}=\dfrac{2}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\overrightarrow{AG}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AB}+3\dfrac{1}{2}\overrightarrow{AC}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Bạn Thùy đặt một tấm bìa cứng hình tam giác (như hình vẽ) lên đầu một ngòi bút nhưng tấm bìa không bị rơi. Hỏi bạn Thùy đã đặt ngòi bút tại điểm nào của tấm bìa?

Điểm \(A\)
Trung điểm \(M\)
Trung điểm \(N\)
Giao điểm \(AM\) và \(BN\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) đều, cạnh \(a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|\).

\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\sqrt{3}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\dfrac{\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự