Cho hình chóp $S.ABC$ có tam giác $ABC$ vuông cân tại $A$, $AB=AC=a$ và $SA=SB=SC=a$. Tính $\overrightarrow{AB}\cdot\overrightarrow{SC}$.
![]() | $\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2}{2}$ |
![]() | $\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2}{2}$ |
![]() | $\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2\sqrt{3}}{2}$ |
![]() | $\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2\sqrt{3}}{2}$ |
Trong không gian \(Oxyz\) cho điểm \(H(1;2;3)\). Viết phương trình mặt phẳng \((P)\) đi qua điểm \(H\) và cắt các trục tọa độ tại ba điểm phân biệt \(A,\,B,\,C\) sao cho \(H\) là trực tâm của tam giác \(ABC\).
![]() | \((P)\colon x+\dfrac{y}{2}+\dfrac{z}{3}=1\) |
![]() | \((P)\colon x+2y+3z-14=0\) |
![]() | \((P)\colon x+y+z-6=0\) |
![]() | \((P)\colon\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1\) |
Cho tam giác \(OAB\) vuông cân tại \(O\), cạnh \(OA=a\). Tính \(\left|2\overrightarrow{OA}-\overrightarrow{OB}\right|\).
![]() | \(a\) |
![]() | \(\left(1+\sqrt{2}\right)a\) |
![]() | \(a\sqrt{5}\) |
![]() | \(2a\sqrt{2}\) |
Cho tam giác \(ABC\) vuông cân tại \(C\) với \(AB=\sqrt{2}\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{5}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{5}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\sqrt{3}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\sqrt{3}\) |
Cho tam giác \(ABC\) vuông cân tại \(A\) với \(AB=a\). Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\).
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{2}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{a\sqrt{2}}{2}\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\) |
![]() | \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
![]() | \(\cos A=\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=\dfrac{1}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Cho tam giác \(ABC\) vuông tại \(A\), có \(\widehat{B}=60^\circ\) và \(AB=a\). Kết quả nào sau đây là sai?
![]() | \(\overrightarrow{AC}\cdot\overrightarrow{CB}=-3a\sqrt{2}\) |
![]() | \(\overrightarrow{AB}\cdot\overrightarrow{BC}=-a^2\) |
![]() | \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) |
![]() | \(\overrightarrow{CA}\cdot\overrightarrow{CB}=3a^2\) |
Cho tam giác \(ABC\) đều cạnh \(a\), trọng tâm \(G\). Tích vô hướng \(\overrightarrow{BC}\cdot\overrightarrow{CG}\) bằng
![]() | \(\dfrac{a^2}{\sqrt{2}}\) |
![]() | \(-\dfrac{a^2}{\sqrt{2}}\) |
![]() | \(\dfrac{a^2}{2}\) |
![]() | \(-\dfrac{a^2}{2}\) |
Cho tam giác \(ABC\) đều cạnh \(a\). Tích vô hướng \(\overrightarrow{AB}\cdot\overrightarrow{AC}\) bằng
![]() | \(2a\) |
![]() | \(\dfrac{a^2}{2}\) |
![]() | \(a^2\) |
![]() | \(-\dfrac{a^2}{2}\) |
Trong không gian, cho tứ diện $ABCD$ có trọng tâm $S$. Gọi $G$ là trọng tâm tam giác $BCD$, $M$ và $N$ lần lượt là trung điểm của $AB$, $CD$. Mệnh đề nào sau đây là sai?
![]() | $S$ là trung điểm đoạn $MN$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ |
![]() | $S$ nằm trên đoạn $AG$ sao cho $SA=3SG$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ |
Trong không gian, điểm $S$ là trọng tâm của tam giác $ABC$ nếu
![]() | $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=\overrightarrow{0}$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{SC}$ |
![]() | $\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{0}$ |
![]() | $\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AS}$ |
Cho tứ diện $ABCD$ có $G$ là trọng tâm tam giác $BCD$. Mệnh đề nào sau đây không đúng?
![]() | $\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AG}$ |
![]() | $\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}$ |
![]() | $\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$ |
![]() | $\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}-3\overrightarrow{AG}=\overrightarrow{0}$ |
Cho 2 vectơ $\overrightarrow{u},\,\overrightarrow{v}$ có $\big|\overrightarrow{u}\big|=2$, $\big|\overrightarrow{v}\big|=5$ và $\big(\overrightarrow{u},\overrightarrow{v}\big)=30^\circ$. Tính $\overrightarrow{u}\cdot\overrightarrow{v}$.
![]() | $\overrightarrow{u}\cdot\overrightarrow{v}=5\sqrt{2}$ |
![]() | $\overrightarrow{u}\cdot\overrightarrow{v}=5$ |
![]() | $\overrightarrow{u}\cdot\overrightarrow{v}=10$ |
![]() | $\overrightarrow{u}\cdot\overrightarrow{v}=5\sqrt{3}$ |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
![]() | $3$ |
![]() | $6$ |
![]() | $2$ |
![]() | $3\sqrt{3}$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $B(3;0)$ và $C(-3;4)$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$, $AC$. Tìm tọa độ véc-tơ $\overrightarrow{MN}$.
![]() | $\overrightarrow{MN}=(-3;2)$ |
![]() | $\overrightarrow{MN}=(3;-2)$ |
![]() | $\overrightarrow{MN}=(-6;4)$ |
![]() | $\overrightarrow{MN}=(1;0)$ |
Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).
![]() | \(T=3\) |
![]() | \(T=6\) |
![]() | \(T=0\) |
![]() | \(T=9\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
![]() | \(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) |
![]() | \(\overrightarrow{u}=\overrightarrow{v}\) |
![]() | \(\overrightarrow{u}\bot\overrightarrow{v}\) |
![]() | \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).
![]() | \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\) |
![]() | \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\) |
![]() | \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\) |
![]() | \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
![]() | \(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) |
![]() | \(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) |
![]() | \(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) |
![]() | \(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
![]() | Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) |
![]() | \(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) |
![]() | \(\vec{m}\cdot\vec{n}=-1\) |
![]() | \(\vec{m}\) và \(\vec{n}\) không cùng phương |