Tìm giá trị thực của tham số \(m\) để phương trình \((m-2)\sin2x=m+1\) nhận \(x=\dfrac{\pi}{12}\) làm nghiệm.
\(m\neq2\) | |
\(m=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}-2}\) | |
\(m=-4\) | |
\(m=-1\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(3\sin2x-m^2+5=0\) có nghiệm?
\(6\) | |
\(2\) | |
\(1\) | |
\(7\) |
Tìm các giá trị của tham số \(m\) để phương trình $$(m+1)\sin x+2-m=0$$có nghiệm.
\(m\leq-1\) | |
\(m\geq\dfrac{1}{2}\) | |
\(-1< m\leq\dfrac{1}{2}\) | |
\(m>-1\) |
Tìm tất cả các giá trị thực của m để phương trình $\sin x=m$ vô nghiệm?
$\left[\begin{array}{l}m< -1\\ m>1\end{array}\right.$ | |
$m< -1$ | |
$-1\le m\le 1$ | |
$m>1$ |
Tìm tất cả các giá trị của tham số $m$ để phương trình $\sin x+\left(m-1\right)\cos x=2m-1$ có nghiệm.
$\dfrac{1}{3}\le m\le\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\le m\le\dfrac{1}{3}$ | |
$-\dfrac{1}{3}\le m\le1$ | |
$\dfrac{1}{2}\le m\le1$ |
Tìm $m$ để phương trình $\dfrac{2\sin x+\cos x+1}{\sin x-2\cos x+3}=m$ có nghiệm.
$\dfrac{1}{2}\leq m\leq2$ | |
$m\geq2$ | |
$m\leq-\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\leq m\leq2$ |
Tìm tất cả các giá trị của tham số $\mathrm{m}$ để phương trình $\sin x+(m-1)\cos x=2m-1$ có nghiệm.
$\dfrac{1}{3}\leqslant m\leqslant\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\leqslant m\leqslant\dfrac{1}{3}$ | |
$-\dfrac{1}{3}\leqslant m\leqslant1$ | |
$\dfrac{1}{2}\leqslant m\leqslant1$ |
Điều kiện để phương trình $m\cdot\sin x-3\cos x=5$ có nghiệm là
$m\geq4$ | |
$\left[\begin{array}{l}m\leq-4\\ m\geq4\end{array}\right.$ | |
$m\geq\sqrt{34}$ | |
$-4\leq m\leq4$ |
Phương trình $\cos x-m=0$ vô nghiệm khi
$\left[\begin{array}{l}m< -1\\ m>1\end{array}\right.$ | |
$m>1$ | |
$-1\leq m\leq1$ | |
$m< -1$ |
Nghiệm của phương trình $3\tan x-\sqrt{3}=0$ là
$x=\dfrac{\pi}{6}+k\dfrac{\pi}{3},\,k\in\mathbb{Z}$ | |
$x=\dfrac{\pi}{6}+k\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{\pi}{6}+k\dfrac{2\pi}{3},\,k\in\mathbb{Z}$ |
Biết rằng tập hợp tất cả các giá trị của $m$ để phương trình $m\sin2x-4\cos2x=-6$ vô nghiệm là khoảng $(a;b)$, với $a<b$. Tính $P=ab$.
$P=2\sqrt{5}$ | |
$P=-20$ | |
$P=20$ | |
$P=52$ |
Phương trình $\cos x-\left(m-1\right)\sin x=m+1$ có nghiệm khi
$m\in\left[\dfrac{1}{4};+\infty\right)$ | |
$m\in\left[-1;2\right]$ | |
$m\in\left[-3;5\right]$ | |
$m\in\left(-\infty;\dfrac{1}{4}\right]$ |
Giá trị của $m$ để phương trình $m\sin x+\left(m-1\right)\cos x=2m+1$ có nghiệm là
$m>0$ | |
$m>-3$ | |
$0\le m\le3$ | |
$-3\le m\le0$ |
Điều kiện cần và đủ của tham số $m$ để phương trình $\sin x-m\sqrt{3}\cos x=2m$ có nghiệm là
$-1\le m\le1$ | |
$0\le m<2$ | |
$-1<m<1$ | |
$0\le m\le2$ |
Tìm $m$ để phương trình $m\cdot\sin x+5\cos x=m+1$ có nghiệm.
$m\le24$ | |
$m\le6$ | |
$m\le12$ | |
$m\le3$ |
Tìm tất cả các giá trị của tham số $m$ để phương trình $\sin x+\left(m-1\right)\cos x=2m-1$ có nghiệm.
$\dfrac{1}{3}\le m\le\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\le m\le\dfrac{1}{3}$ | |
$-\dfrac{1}{3}\le m\le1$ | |
$\dfrac{1}{2}\le m\le1$ |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Tìm \(m\) để phương trình \(5\cos x-m\sin x=m+1\) có nghiệm.
\(m\leq12\) | |
\(m\leq-13\) | |
\(m\leq24\) | |
\(m\geq24\) |
Nghiệm của phương trình \(2\sin\left(4x-\dfrac{\pi}{3}\right)-1=0\) là
\(x=\dfrac{\pi}{8}+k\dfrac{\pi}{2};\;x=\dfrac{7\pi}{24}+k\dfrac{\pi}{2}\) | |
\(x=k\pi;\;x=\pi+k2\pi\) | |
\(x=k\pi;\;x=\dfrac{\pi}{2}+k2\pi\) | |
\(x=\pi+k2\pi;\;x=k\dfrac{\pi}{2}\) |
Tìm tham số \(m\) để phương trình $$m\sin x-\cos x=\sqrt{5}$$có nghiệm.
\(\left[\begin{array}{l}m\le-2\\ m\ge2\end{array}\right.\) | |
\(-2\le m\le2\) | |
\(\left[\begin{array}{l}m\le-\sqrt{6}\\ m\ge\sqrt{6}\end{array}\right.\) | |
\(-\sqrt{6}\le m\le\sqrt{6}\) |