Phương trình \(\sin{x}+\sqrt{3}\cos{x}=2\) tương đương với phương trình nào sau đây?
\(\sin\left(x+\dfrac{\pi}{3}\right)=1\) | |
\(\sin\left(x-\dfrac{\pi}{3}\right)=1\) | |
\(\cos\left(x+\dfrac{\pi}{3}\right)=1\) | |
\(\cos\left(x-\dfrac{\pi}{3}\right)=1\) |
Điều kiện có nghiệm của phương trình $a\sin x+b\cos x=c$ là
$a^2+b^2>c^2$ | |
$a^2+b^2\geq c^2$ | |
$a^2+b^2\leq c^2$ | |
$a^2+b^2< c^2$ |
Cho phương trình $a\sin x+b\cos x=c$ (với $a$, $b$, $c$ là các tham số). Tìm điều kiện cần và đủ của $a$, $b$, $c$ để phương trình có nghiệm.
$a^2+b^2\ge c^2$ | |
$a^2+b^2\le c^2$ | |
$a+b\ge c$ | |
$a+b\le c$ |
Phương trình nào sau đây là phương trình bậc nhất đối với \(\sin x\) và \(\cos x\)?
\(x^2-3\sin x+\cos x=2\) | |
\(\sin x+3x=1\) | |
\(3\cos x-\sin2x=2\) | |
\(\sqrt{3}\cdot\cos x-\sin x=1\) |
Giải các phương trình lượng giác sau:
Phương trình $\sin x-\sqrt{3}\cos x=1$ tương đương với phương trình nào sau đây?
$\sin\left(x-\dfrac{\pi}{3}\right)=1$ | |
$\sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$\sin\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}$ | |
$\sin\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}$ |
Nghiệm của phương trình $\tan x=\tan\alpha$ là
$x=\alpha+k3\pi,\,k\in\mathbb{Z}$ | |
$x=\alpha+k2\pi,\,k\in\mathbb{Z}$ | |
$x=\alpha$ | |
$x=\alpha+k\pi,\,k\in\mathbb{Z}$ |
Phương trình $\sin x=\sin\alpha$ có nghiệm là
$\left[\begin{array}{l}x=\alpha+k\pi\\ x=\pi-\alpha+k\pi\end{array}\right.$ | |
$\left[\begin{array}{l}x=\alpha+k2\pi\\ x=-\alpha+k2\pi\end{array}\right.$ | |
$\left[\begin{array}{l}x=\alpha+k\pi\\ x=-\alpha+k\pi\end{array}\right.$ | |
$\left[\begin{array}{l}x=\alpha+k2\pi\\ x=\pi-\alpha+k2\pi\end{array}\right.$ |
Tìm nghiệm của phương trình $\cos x=1$.
$x=\dfrac{\pi}{2}+k\pi\,(k\in\mathbb{Z})$ | |
$x=k2\pi\,(k\in\mathbb{Z})$ | |
$x=k\pi\,(k\in\mathbb{Z})$ | |
$x=\pi+k\pi\,(k\in\mathbb{Z})$ |
Tìm tất cả các giá trị của tham số $m$ để phương trình $\sin x+\left(m-1\right)\cos x=2m-1$ có nghiệm.
$\dfrac{1}{3}\le m\le\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\le m\le\dfrac{1}{3}$ | |
$-\dfrac{1}{3}\le m\le1$ | |
$\dfrac{1}{2}\le m\le1$ |
Số nghiệm của phương trình $\sin x-\sqrt{3}\cos x=2$ trong khoảng $(0;5\pi)$ là
$3$ | |
$4$ | |
$2$ | |
$1$ |
Nghiệm của phương trình $\sqrt{3}\sin x-\cos x=2$ là
$x=\dfrac{2\pi}{3}+k\dfrac{2\pi}{3},\,k\in\mathbb{Z}$ | |
$x=\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{2\pi}{3}+k\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{2\pi}{3}+k2\pi,\,k\in\mathbb{Z}$ |
Biến đổi phương trình $-\sqrt{3}\sin x+\cos x=1$ về phương trình lượng giác cơ bản, ta được
$\sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$\sin\left(x-\dfrac{\pi}{6}\right)=1$ | |
$\sin\left(x+\dfrac{5\pi}{6}\right)=\dfrac{1}{2}$ | |
$\sin\left(\dfrac{\pi}{6}-x\right)=1$ |
Tìm tất cả các giá trị của tham số $\mathrm{m}$ để phương trình $\sin x+(m-1)\cos x=2m-1$ có nghiệm.
$\dfrac{1}{3}\leqslant m\leqslant\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\leqslant m\leqslant\dfrac{1}{3}$ | |
$-\dfrac{1}{3}\leqslant m\leqslant1$ | |
$\dfrac{1}{2}\leqslant m\leqslant1$ |
Điều kiện để phương trình $m\cdot\sin x-3\cos x=5$ có nghiệm là
$m\geq4$ | |
$\left[\begin{array}{l}m\leq-4\\ m\geq4\end{array}\right.$ | |
$m\geq\sqrt{34}$ | |
$-4\leq m\leq4$ |
Tìm công thức nghiệm của phương trình $\sin x=\sin\beta^{\circ}$ trong các công thức nghiệm sau đây:
$\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ | |
$\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ | |
$\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ | |
$\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
Phương trình $\sin x=0$ có nghiệm là
$x=k\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$ | |
$x=\dfrac{-\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$ |
Biết rằng tập hợp tất cả các giá trị của $m$ để phương trình $m\sin2x-4\cos2x=-6$ vô nghiệm là khoảng $(a;b)$, với $a<b$. Tính $P=ab$.
$P=2\sqrt{5}$ | |
$P=-20$ | |
$P=20$ | |
$P=52$ |
Phương trình $\left(2\sin x+1\right)\left(4\cos4x+2\sin x\right)+4\cos^2x=3$ tương đương với phương trình nào trong các phương trình được cho dưới đây?
$\left(4\cos x-1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos4x-1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos x+1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos4x+1\right)\left(2\sin x+1\right)=0$ |
Phương trình $\sin x+\sqrt{3}\cos x=\sqrt{2}$ có nghiệm $x=\alpha+k2\pi$ và $x=\beta+k2\pi$ với $-\dfrac{\pi}{2}<\alpha,\,\beta<\dfrac{\pi}{2}$ $(k\in\mathbb{Z})$. Khi đó, $\alpha\cdot\beta$ bằng
$\dfrac{7\pi^2}{144}$ | |
$-\dfrac{5\pi^2}{144}$ | |
$\dfrac{5\pi^2}{144}$ | |
$-\dfrac{7\pi^2}{144}$ |