Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
![]() | $(2;+\infty)$ |
![]() | $\mathbb{R}\setminus\{2\}$ |
![]() | $\mathbb{R}$ |
![]() | $[2;+\infty)$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
![]() | $\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ |
![]() | $\{k2\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là
![]() | $\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$ |
![]() | $\mathscr{D}=(-1;+\infty)$ |
![]() | $\mathscr{D}=\mathbb{R}$ |
![]() | $\mathscr{D}=\mathbb{R}\setminus\{-1\}$ |
Tập xác định của hàm số \(y=\dfrac{\cot x}{\sin x-1}\) là
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2}\bigg|k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{3}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi;\,k\pi\bigg|k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sqrt{1-\sin x}}$$
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{\cot x+3}{\cos x}$$
![]() | \(\mathscr{D}=\Bbb{R}\setminus \left\{\dfrac{k\pi}{2},\,k\in\Bbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\Bbb{R}\setminus\left\{k\pi,\,k\in \Bbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\Bbb{R}\setminus\left\{k2\pi,\,k\in \Bbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\Bbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi ,\,k\in\Bbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sin x-\cos x}$$
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{-\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{1}{\sin\left(x-\dfrac{\pi}{2}\right)}\).
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2},\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tập xác định của hàm số \(y=\dfrac{1}{\sin2x}\) là
![]() | \(\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathbb{R}\setminus\left\{\dfrac{k\pi}{2},\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Điều kiện xác định của hàm số $y=\dfrac{2}{\cos x-1}$ là
![]() | $\cos x\neq-1$ |
![]() | $\cos x\neq1$ |
![]() | $\cos x\neq2$ |
![]() | $\cos x\neq0$ |
Tích phân $I=\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{4}}^{\tfrac{\pi}{3}}\dfrac{\mathrm{d}x}{\sin^2x}$ bằng
![]() | $\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$ |
![]() | $\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$ |
![]() | $-\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$ |
![]() | $-\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
![]() | $y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ |
![]() | $y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ |
![]() | $y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ |
![]() | $y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
![]() | $y'=-\dfrac{\cos2x}{\sin^22x}$ |
![]() | $y'=\dfrac{2\cos2x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
![]() | $-2$ |
![]() | $\dfrac{1}{2}$ |
![]() | $0$ |
![]() | $-\dfrac{1}{2}$ |
Điều kiện xác định của hàm số \(y=\dfrac{1-\cos x}{\sin x}\) là
![]() | \(x\ne\dfrac{\pi}{2}+k\pi\) |
![]() | \(x\ne k\pi\) |
![]() | \(x\ne-\dfrac{\pi}{2}+k2\pi\) |
![]() | \(x\ne\dfrac{\pi}{2}+k2\pi\) |
Hàm số nào sau đây có tập xác định là \(\mathbb{R}\)?
![]() | \(y=\tan x+\sin\dfrac{7\pi}{12}\) |
![]() | \(y=\dfrac{1}{\sqrt{1-\cos x}}\) |
![]() | \(y=\cot2x\) |
![]() | \(y=\sqrt{1+\sin x}+\tan\dfrac{\pi}{12}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\sqrt{1-\sin2x}-\sqrt{1+\sin2x}$$
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\left[\dfrac{\pi}{6}+k2\pi;\dfrac{5\pi}{6}+k2\pi\right],\,k\in\mathbb{Z}\) |
![]() | \(\mathscr{D}=\left[\dfrac{5\pi}{6}+k2\pi;\dfrac{13\pi}{6}+k2\pi\right],\,k\in\mathbb{Z}\) |
![]() | \(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\sqrt{\sin x-1}\).
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\sqrt{\sin x-2}\).
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\left[-2;+\infty\right)\) |
![]() | \(\mathscr{D}=\left[0;2\pi\right]\) |
![]() | \(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\sqrt{\sin x+2}\).
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\left[-2;+\infty\right)\) |
![]() | \(\mathscr{D}=\left[0;2\pi\right]\) |
![]() | \(\mathscr{D}=\varnothing\) |