Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\{k2\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sin x-\cos x}$$
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{-\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
$(2;+\infty)$ | |
$\mathbb{R}\setminus\{2\}$ | |
$\mathbb{R}$ | |
$[2;+\infty)$ |
Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là
$\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$ | |
$\mathscr{D}=(-1;+\infty)$ | |
$\mathscr{D}=\mathbb{R}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{-1\}$ |
Điều kiện xác định của hàm số $y=\dfrac{2}{\cos x-1}$ là
$\cos x\neq-1$ | |
$\cos x\neq1$ | |
$\cos x\neq2$ | |
$\cos x\neq0$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
$y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
$-2$ | |
$\dfrac{1}{2}$ | |
$0$ | |
$-\dfrac{1}{2}$ |
Tập xác định của hàm số \(y=\dfrac{\cot x}{\sin x-1}\) là
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2}\bigg|k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{3}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi;\,k\pi\bigg|k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sqrt{1-\sin x}}$$
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{\tan x}{1-\cos^2x}$$
\(\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{\dfrac{k\pi}{2},\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{-\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{3\tan x-5}{1-\sin^2x}$$
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=3\tan^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)$$
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{3\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{3\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{1}{\sin\left(x-\dfrac{\pi}{2}\right)}\).
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2},\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=f(x)=\dfrac{\sin x}{1-\cos2x}$$
\(\mathscr{D}=\mathbb{R}\setminus\left\{k2\pi,\,k\in \mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k\pi,\,k\in \mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in \mathbb{Z}\right\}\) |
Tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{2017}{1+\cos x}\) là
\(\mathscr{D}=\mathbb{R}\setminus\{\pi+k2\pi,\,k\in\mathbb{Z}\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\{k2\pi,\,k\in\mathbb{Z}\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus \left\{-\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus \left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{1-\sin x}{\cos x-1}\).
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tập xác định của hàm số \(y=\dfrac{1}{\sin2x}\) là
\(\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{\dfrac{k\pi}{2},\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{2020}{\sin x}\).
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\{0\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
\(2\) | |
\(-2\) | |
\(-4\) | |
\(3\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
\(S=3\) | |
\(S=4\) | |
\(S=0\) | |
\(S=1\) |