Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
$(2;+\infty)$ | |
$\mathbb{R}\setminus\{2\}$ | |
$\mathbb{R}$ | |
$[2;+\infty)$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\{k2\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\sqrt{1-\sin2x}-\sqrt{1+\sin2x}$$
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\left[\dfrac{\pi}{6}+k2\pi;\dfrac{5\pi}{6}+k2\pi\right],\,k\in\mathbb{Z}\) | |
\(\mathscr{D}=\left[\dfrac{5\pi}{6}+k2\pi;\dfrac{13\pi}{6}+k2\pi\right],\,k\in\mathbb{Z}\) | |
\(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sqrt{1-\sin x}}$$
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\sqrt{\sin x-2}\).
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\left[-2;+\infty\right)\) | |
\(\mathscr{D}=\left[0;2\pi\right]\) | |
\(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\sqrt{\sin x+2}\).
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\left[-2;+\infty\right)\) | |
\(\mathscr{D}=\left[0;2\pi\right]\) | |
\(\mathscr{D}=\varnothing\) |
Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là
$\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$ | |
$\mathscr{D}=(-1;+\infty)$ | |
$\mathscr{D}=\mathbb{R}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{-1\}$ |
Hàm số nào sau đây không có đạo hàm trên $\mathbb{R}$?
$y=\left|x-1\right|$ | |
$y=\sqrt{x^2-4x+5}$ | |
$y=\sin x$ | |
$y=\sqrt{2-\cos x}$ |
Tập xác định của hàm số \(y=\dfrac{\cot x}{\sin x-1}\) là
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2}\bigg|k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{3}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi;\,k\pi\bigg|k\in\mathbb{Z}\right\}\) |
Hàm số nào sau đây có tập xác định là \(\mathbb{R}\)?
\(y=\tan x+\sin\dfrac{7\pi}{12}\) | |
\(y=\dfrac{1}{\sqrt{1-\cos x}}\) | |
\(y=\cot2x\) | |
\(y=\sqrt{1+\sin x}+\tan\dfrac{\pi}{12}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{\cot x+3}{\cos x}$$
\(\mathscr{D}=\Bbb{R}\setminus \left\{\dfrac{k\pi}{2},\,k\in\Bbb{Z}\right\}\) | |
\(\mathscr{D}=\Bbb{R}\setminus\left\{k\pi,\,k\in \Bbb{Z}\right\}\) | |
\(\mathscr{D}=\Bbb{R}\setminus\left\{k2\pi,\,k\in \Bbb{Z}\right\}\) | |
\(\mathscr{D}=\Bbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi ,\,k\in\Bbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sin x-\cos x}$$
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{-\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{1}{\sin\left(x-\dfrac{\pi}{2}\right)}\).
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2},\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tập xác định của hàm số \(y=\dfrac{1}{\sin2x}\) là
\(\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{\dfrac{k\pi}{2},\,k\in\mathbb{Z}\right\}\) | |
\(\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{2020}{\sin x}\).
\(\mathscr{D}=\mathbb{R}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\{0\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) | |
\(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
$5$ | |
$2$ | |
$3$ | |
$\dfrac{5}{2}$ |
Tìm tập xác định của hàm số $y=\cot\dfrac{x}{2}$.
$\mathbb{R}\setminus\left\{k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}$ |
Tập xác định của hàm số $y=\cos x$ là tập hợp nào trong các tập hợp dưới đây?
$\mathbb{R}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,\,k\in\mathbb{Z}\right\}$ |
Số giờ có ánh sáng mặt trời của một thành phố $X$ ở vĩ độ $40^{\circ}$ Bắc trong ngày thứ $t$ của năm 2015 được cho bởi hàm số $y=2\sin\left[\dfrac{\pi}{180}(t-70)\right]+13$ với $t\in\mathbb{Z}$ và $0< t\leq365$. Thành phố $X$ có đúng $11$ giờ có ánh sáng mặt trời vào ngày thứ bao nhiêu trong năm?
$300$ | |
$70$ | |
$180$ | |
$340$ |