Tìm nghiệm của phương trình $\cos x=1$.
![]() | $x=\dfrac{\pi}{2}+k\pi\,(k\in\mathbb{Z})$ |
![]() | $x=k2\pi\,(k\in\mathbb{Z})$ |
![]() | $x=k\pi\,(k\in\mathbb{Z})$ |
![]() | $x=\pi+k\pi\,(k\in\mathbb{Z})$ |
Giải phương trình \(\cos^2x+\cos x=0\).
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k2\pi\\ x=k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\pm \dfrac{\pi}{2}+k2\pi\\ x=k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{k\pi}{2}\,\left(k\in\mathbb{Z}\right)\) |
Nghiệm của phương trình $\tan x=\tan\alpha$ là
![]() | $x=\alpha+k3\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\alpha+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\alpha$ |
![]() | $x=\alpha+k\pi,\,k\in\mathbb{Z}$ |
Nghiệm của phương trình $\cos x=\dfrac{\sqrt{2}}{2}$ là
![]() | $x=\pm\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\pm\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\pm\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\pm\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}$ |
Phương trình $\sin x=\sin\alpha$ có nghiệm là
![]() | $\left[\begin{array}{l}x=\alpha+k\pi\\ x=\pi-\alpha+k\pi\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x=\alpha+k2\pi\\ x=-\alpha+k2\pi\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x=\alpha+k\pi\\ x=-\alpha+k\pi\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x=\alpha+k2\pi\\ x=\pi-\alpha+k2\pi\end{array}\right.$ |
Điều kiện có nghiệm của phương trình $a\sin x+b\cos x=c$ là
![]() | $a^2+b^2>c^2$ |
![]() | $a^2+b^2\geq c^2$ |
![]() | $a^2+b^2\leq c^2$ |
![]() | $a^2+b^2< c^2$ |
Cho phương trình $\cos^2x+3\sin x-3=0$. Đặt $\sin x=t$ $(-1\leq t\leq1)$ ta được phương trình nào sau đây?
![]() | $t^2+3t+2=0$ |
![]() | $t^2-3t+2=0$ |
![]() | $t^2-3t-2=0$ |
![]() | $t^2+3t-3=0$ |
Phương trình $\cos^2x+2\cos x-3=0$ có nghiệm là
![]() | $x=\dfrac{\pi}{2}+k2\pi$ |
![]() | Vô nghiệm |
![]() | $x=k2\pi$ |
![]() | $x=0$ |
Phương trình $\cos x-m=0$ vô nghiệm khi
![]() | $\left[\begin{array}{l}m< -1\\ m>1\end{array}\right.$ |
![]() | $m>1$ |
![]() | $-1\leq m\leq1$ |
![]() | $m< -1$ |
Tìm công thức nghiệm của phương trình $\sin x=\sin\beta^{\circ}$ trong các công thức nghiệm sau đây:
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
Phương trình $\sin x=0$ có nghiệm là
![]() | $x=k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{-\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$ |
Phương trình $\cos\left(x-20^{\circ}\right)=\dfrac{1}{2}$ có các nghiệm là
![]() | $x=50^{\circ}+k 360^{\circ},\,x=-10^{\circ}+k 360^{\circ}$ ($k\in\mathbb{Z}$) |
![]() | $x=40^{\circ}+k 360^{\circ},\,x=-40^{\circ}+k 360^{\circ}$ ($k\in\mathbb{Z}$) |
![]() | $x=80^{\circ}+k 360^{\circ},\,x=40^{\circ}+k 360^{\circ}$ ($k\in\mathbb{Z}$) |
![]() | $x=80^{\circ}+k 360^{\circ},\,x=-40^{\circ}+k 360^{\circ}$ ($k\in\mathbb{Z}$) |
Phương trình $\cos x=\dfrac{1}{2}$ có tập nghiệm là
![]() | $\left\{-\dfrac{\pi}{3}+k2\pi\mid k\in\mathbb{Z}\right\}$ |
![]() | $\left\{\pm\dfrac{\pi}{3}+k2\pi\mid k\in\mathbb{Z}\right\}$ |
![]() | $\left\{\dfrac{\pi}{3}+k2\pi\mid k\in\mathbb{Z}\right\}$ |
![]() | $\left\{\pm\dfrac{2\pi}{3}+k2\pi\mid k\in\mathbb{Z}\right\}$ |
Tính tổng các nghiệm thuộc $\left[-2\pi;2\pi\right]$ của phương trình $\sin^2x+\cos2x+2\cos x=0$.
![]() | $2\pi$ |
![]() | $\dfrac{2\pi}{3}$ |
![]() | $\dfrac{\pi}{3}$ |
![]() | $0$ |
Tìm tập nghiệm của phương trình $\sin3x-\cos x=0$.
![]() | $\left\{\dfrac{\pi}{8}+k\pi,\,\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}\right\}$ |
![]() | $\left\{\dfrac{\pi}{8}+k\dfrac{\pi}{2},\,k\in\mathbb{Z}\right\}$ |
![]() | $\left\{\dfrac{\pi}{8}+k\dfrac{\pi}{2},\,\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}$ |
![]() | $\left\{\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}$ |
Phương trình $\left(2\sin x+1\right)\left(4\cos4x+2\sin x\right)+4\cos^2x=3$ tương đương với phương trình nào trong các phương trình được cho dưới đây?
![]() | $\left(4\cos x-1\right)\left(2\sin x+1\right)=0$ |
![]() | $\left(4\cos4x-1\right)\left(2\sin x+1\right)=0$ |
![]() | $\left(4\cos x+1\right)\left(2\sin x+1\right)=0$ |
![]() | $\left(4\cos4x+1\right)\left(2\sin x+1\right)=0$ |
Phương trình $2\cos^2x+5\cos x+2=0$ có bao nhiêu nghiệm trên khoảng $\left(-\pi;3\pi\right)$?
![]() | $5$ |
![]() | $3$ |
![]() | $2$ |
![]() | $4$ |
Nghiệm của phương trình $3\sin x-\cos2x+1=0$ là
![]() | $x=\pi+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=-\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=k2\pi,\,k\in\mathbb{Z}$ |
Số nghiệm của phương trình $\sqrt{2}\cos\left(x+\dfrac{\pi}{3}\right)=1$ với $0\le x\le2\pi$ là
![]() | $3$ |
![]() | $2$ |
![]() | $1$ |
![]() | $4$ |
Tính tổng các nghiệm của phương trình $2\cos^2x+5\sin x-4=0$ trong $[0;2\pi]$.
![]() | $0$ |
![]() | $\dfrac{8\pi}{3}$ |
![]() | $\pi$ |
![]() | $\dfrac{5\pi}{6}$ |