Giải phương trình $\cot x=-\sqrt{3}$.
![]() | $x=-\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=-\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=-\dfrac{\pi}{6}+k\pi,\,k\in\mathbb{Z}$ |
Nghiệm của phương trình $\cot x=\cot\dfrac{\pi}{3}$ là
![]() | $x=\pm \dfrac{\pi}{3}+k\pi\,(k\in\mathbb{Z})$ |
![]() | $x=\dfrac{\pi}{6}+k2\pi\,(k\in\mathbb{Z})$ |
![]() | $x=\dfrac{\pi}{3}+k\pi\,(k\in\mathbb{Z}).$ |
![]() | $x=\dfrac{\pi}{3}+k2\pi\,(k\in\mathbb{Z})$ |
Nghiệm của phương trình $3\cot x+\tan x-2\sqrt{3}=0$ là
![]() | $x=\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}$ |
Phương trình lượng giác \(\sin^2x-3\cos x-4=0\) có nghiệm là
![]() | \(x=-\pi+k2\pi\) |
![]() | \(x=\dfrac{\pi}{6}+k\pi\) |
![]() | \(x=-\dfrac{\pi}{2}+k2\pi\) |
![]() | Vô nghiệm |
Nghiệm của phương trình \(\sin x+\sqrt{3}\cos x=1\) là
![]() | \(x=\dfrac{-\pi}{6}+k2\pi(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{-\pi}{6}+k2\pi\\ x=\dfrac{\pi}{2}+k2\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{-\pi}{6}+k\pi\\ x=\dfrac{\pi}{2}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=k2\pi\\ x=\dfrac{\pi}{3}+k2\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
Giải phương trình $$4\sin x\cdot\cos3x=1-2\sin2x$$
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{6}+k2\pi\\ x=\dfrac{5\pi}{6}+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{6}+k\pi\\ x=\dfrac{5\pi}{6}+k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{24}+\dfrac{k\pi}{2}\\ x=\dfrac{5\pi}{24}+\dfrac{k\pi}{2}\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{24}+k2\pi\\ x=\dfrac{5\pi}{24}+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
Giải phương trình \(\sqrt{3}\sin x+\cos x=2\).
![]() | \(x=\dfrac{\pi}{2}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{\pi}{3}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{\pi}{6}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{2\pi}{3}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
Giải phương trình \(\cos^2x+\cos x=0\).
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k2\pi\\ x=k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\pm \dfrac{\pi}{2}+k2\pi\\ x=k\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{k\pi}{2}\,\left(k\in\mathbb{Z}\right)\) |
Giải phương trình \(\dfrac{\sin2x}{1-\cos x}=0\).
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\ x=\pi+k2\pi\end{array}\right.,\,k\in\mathbb{Z}\) |
![]() | \(x=\dfrac{k\pi}{2},\,k\in\mathbb{Z}\) |
![]() | \(x=k\pi,\,k\in\mathbb{Z}\) |
![]() | \(x=\pm\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\) |
Giải phương trình \(2\sin\left(\dfrac{x}{2}+30^\circ\right)-1=0\).
![]() | \(\left[\begin{array}{l}x=k720^\circ\\ x=240^\circ+k720^\circ\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=k360^\circ\\ x=240^\circ+k360^\circ\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=k720^\circ\\ x=-120^\circ+k720^\circ\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=k360^\circ\\ x=-120^\circ+k360^\circ\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
Phương trình \(\cos x=1\) có họ nghiệm là
![]() | \(x=\dfrac{\pi}{2}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{\pi}{2}+k\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=k\pi\,\left(k\in\mathbb{Z}\right)\) |
Phương trình \(\cos2x+\sin^2x+2\cos x+1=0\) có nghiệm là
![]() | \(\left[\begin{array}{l}x=\dfrac{\pi}{3}+k\pi\\ x=-\dfrac{\pi}{3}+k\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(x=\dfrac{\pi}{3}+k2\pi\,(k\in\mathbb{Z})\) |
![]() | \(\left[\begin{array}{l}x=k2\pi\\ x=\dfrac{\pi}{3}+k2\pi\end{array}\right.\,(k\in\mathbb{Z})\) |
![]() | \(x=\pi+k2\pi\,(k\in\mathbb{Z})\) |
Giải phương trình $$\left(2\cos\dfrac{x}{2}-1\right)\left(\sin\dfrac{x}{2}+2\right)=0$$
![]() | \(x=\pm\dfrac{2\pi}{3}+k2\pi,\,k\in\mathbb{Z}\) |
![]() | \(x=\pm\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}\) |
![]() | \(x=\pm\dfrac{\pi}{3}+k4\pi,\,k\in\mathbb{Z}\) |
![]() | \(x=\pm\dfrac{2\pi}{3}+k4\pi,\,k\in\mathbb{Z}\) |
Trên đoạn \(\left[0;2018\pi\right]\), phương trình \(\sqrt{3}\cot x-3=0\) có bao nhiêu nghiệm?
![]() | \(6339\) |
![]() | \(6340\) |
![]() | \(2017\) |
![]() | \(2018\) |
Giải phương trình \(\cot(3x-1)=-\sqrt{3}\).
![]() | \(x=\dfrac{1}{3}+\dfrac{5\pi}{18}+k\dfrac{\pi}{3},\,k\in\mathbb{Z}\) |
![]() | \(x=\dfrac{1}{3}+\dfrac{\pi}{18}+k\dfrac{\pi}{3},\,k\in\mathbb{Z}\) |
![]() | \(x=\dfrac{5\pi}{18}+k\dfrac{\pi}{3},\,k\in\mathbb{Z}\) |
![]() | \(x=\dfrac{1}{3}-\dfrac{\pi}{6}+k\pi,\,k\in\mathbb{Z}\) |
Giải phương trình \(\tan(3x-1)=-\dfrac{\sqrt{3}}{3}\).
![]() | \(x=\dfrac{1}{3}+\dfrac{5\pi}{18}+k\dfrac{\pi}{3}\,(k\in\mathbb{Z})\) |
![]() | \(x=\dfrac{1}{3}+\dfrac{\pi}{18}+k\dfrac{\pi}{3}\,(k\in\mathbb{Z})\) |
![]() | \(x=\dfrac{5\pi}{18}+k\dfrac{\pi}{3}\,(k\in\mathbb{Z})\) |
![]() | \(x=\dfrac{1}{3}-\dfrac{\pi}{6}+k\pi\,(k\in\mathbb{Z})\) |
Tích tất cả các nghiệm của phương trình $\ln^2x+2\ln x-3=0$ bằng
![]() | $\dfrac{1}{\mathrm{e}^3}$ |
![]() | $-2$ |
![]() | $-3$ |
![]() | $\dfrac{1}{\mathrm{e}^2}$ |
Giải các phương trình lượng giác sau:
Phương trình $\sin x-\sqrt{3}\cos x=1$ tương đương với phương trình nào sau đây?
![]() | $\sin\left(x-\dfrac{\pi}{3}\right)=1$ |
![]() | $\sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ |
![]() | $\sin\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}$ |
![]() | $\sin\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}$ |
Giải phương trình $\sin^2x+3\sin x-4=0$.
![]() | $x=k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=0$ |
![]() | $x=\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | Vô nghiệm |