Ngân hàng bài tập

Bài tập tương tự

B

Cho hàm số \(y=\dfrac{3x-1}{x+2}\). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn \([0;2]\). Khi đó \(4M-2m\) bằng

\(10\)
\(6\)
\(5\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^3-3x^2+1\) trên đoạn \([1;2]\). Khi đó tổng \(M+N\) bằng

\(2\)
\(-2\)
\(0\)
\(-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất của hàm số \(y=x+1+\dfrac{4}{x}\) trên đoạn \([1;3]\).

\(4\)
\(\dfrac{16}{3}\)
\(5\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị lớn nhất của hàm số \(y=\dfrac{x^2-3x}{x+1}\) trên đoạn \([0;3]\) bằng

\(3\)
\(2\)
\(0\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Kí hiệu $M$ và $m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2+\sqrt{4-x^2}$. Khi đó $M+m$ bằng

$\dfrac{25}{4}$
$\dfrac{15}{4}$
$4$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.

$\dfrac{8}{5}$
$4-2\sqrt{3}$
$0$
$2\sqrt{3}-4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng

$3$
$-1$
$1$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số $f(x)=x^2+\dfrac{2}{x}$ trên đoạn $\left[\dfrac{1}{2};3\right]$ bằng

$4$
$2$
$1$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số $y=f(x)$ có dạng như đường cong trong hình vẽ bên.

Gọi $M$ là giá trị lớn nhất, $m$ là giá trị nhỏ nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$. Tính $P=M-2m$.

$P=5$
$P=3$
$P=1$
$P=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là

$2\sqrt{3}$
$\dfrac{114}{11}$
$\sqrt{3}$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.

$M+m=\dfrac{10}{3}$
$M+m=\dfrac{16}{3}$
$M+m=3$
$M+m=5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng

$-4$
$-\dfrac{1}{2}$
$-6$
$1-4\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng

$2f(0)-1$
$2f(-1)-4$
$2f(1)$
$2f(2)-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.

Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng

$f(2)+\dfrac{2}{3}$
$f(-1)+\dfrac{2}{3}$
$\dfrac{2}{3}$
$f(1)-\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.

Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm

$x_0=-4$
$x_0=-1$
$x_0=3$
$x_0=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?

$\min\limits_{[-2;2]}h(x)=h(-2)$
$\max\limits_{[0;4]}h(x)=h(0)$
$\min\limits_{[-1;2]}h(x)=h(-1)$
$h(2)< h(4)< h(0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.

$m=5$
$m=\dfrac{5}{6}$
$m=-5$
$m=\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?

$3< m\leq4$
$1\leq m<3$
$m>4$
$m<-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.

$m=-4$
$m=5$
$m=1$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.

$m=-4$
$m=-2$
$m=2$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự