Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
\(150^\circ\) | |
\(90^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
\(\cos A=\dfrac{2}{\sqrt{17}}\) | |
\(\cos A=\dfrac{1}{\sqrt{17}}\) | |
\(\cos A=-\dfrac{2}{\sqrt{17}}\) | |
\(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
\(135^\circ\) | |
\(45^\circ\) | |
\(30^\circ\) | |
\(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;5)\) và \(\vec{b}=(3;-7)\). Tính góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\).
\(60^\circ\) | |
\(45^\circ\) | |
\(135^\circ\) | |
\(120^\circ\) |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
$3$ | |
$6$ | |
$2$ | |
$3\sqrt{3}$ |
Cho \(\vec{u}=\vec{a}+3\vec{b}\) vuông góc với \(\vec{v}=7\vec{a}-5\vec{b}\) và \(\vec{x}=\vec{a}-4\vec{b}\) vuông góc với \(\vec{y}=7\vec{a}-2\vec{b}\). Khi đó góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\) bằng.
\(\left(\vec{a},\vec{b}\right)=75^\circ\) | |
\(\left(\vec{a},\vec{b}\right)=60^\circ\) | |
\(\left(\vec{a},\vec{b}\right)=120^\circ\) | |
\(\left(\vec{a},\vec{b}\right)=45^\circ\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(-3;4;0)\), \(\vec{b}=(5;0;12)\). Tính cosin góc giữa \(\vec{a}\) và \(\vec{b}\).
\(\dfrac{3}{13}\) | |
\(-\dfrac{3}{13}\) | |
\(-\dfrac{5}{6}\) | |
\(\dfrac{5}{6}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(-1;1;0)\), \(\vec{v}=(0;-1;0)\). Góc giữa \(\vec{u}\) và \(\vec{v}\) có số đo bằng
\(120^\circ\) | |
\(45^\circ\) | |
\(135^\circ\) | |
\(60^\circ\) |
Góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(1;7)\) có số đo bằng
\(135^\circ\) | |
\(54^\circ\) | |
\(45^\circ\) | |
\(90^\circ\) |
Cho hình lập phương $ABCD.A'B'C'D'$. Tính góc giữa 2 vectơ $\overrightarrow{AB},\,\overrightarrow{A'C'}$.
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=45^\circ$ | |
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=60^\circ$ | |
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=30^\circ$ | |
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=90^\circ$ |
Cho 2 vectơ $\overrightarrow{u}=\overrightarrow{AB}$, $\overrightarrow{v}=\overrightarrow{AC}$. Khi đó $\big(\overrightarrow{u},\overrightarrow{v}\big)$ bằng
$\widehat{ABC}$ | |
$90^\circ$ | |
$\widehat{ACB}$ | |
$\widehat{BAC}$ |
Trong không gian $Oxyz$, gọi $\varphi$ là góc tạo bởi hai vectơ $\overrightarrow{a}=(3;-1;2)$ và $\overrightarrow{b}=(1;1;-1)$. Mệnh đề nào dưới đây đúng?
$\varphi=30^{\circ}$ | |
$\varphi=45^{\circ}$ | |
$\varphi=90^{\circ}$ | |
$\varphi=60^{\circ}$ |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho ba điểm \(A(-2;1;0)\), \(B(-3;0;4)\), \(C(0;7;3)\). Tính \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)\).
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\sqrt{798}}{57}\) | |
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{14\sqrt{118}}{354}\) | |
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{\sqrt{798}}{57}\) | |
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{7\sqrt{118}}{177}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\) |
Cho vectơ \(\vec{a}=(1;-2)\). Với giá trị nào của \(y\) thì vectơ \(\vec{b}=(-3;y)\) vuông góc với \(\vec{a}\)?
\(-6\) | |
\(6\) | |
\(-\dfrac{3}{2}\) | |
\(3\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;6)\), \(B(x;-2)\) và \(C(2;y)\). Tính \(\overrightarrow{OA}\cdot\overrightarrow{BC}\) theo \(x\) và \(y\).
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+12\) | |
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=0\) | |
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+18\) | |
\(\overrightarrow{OA}\cdot\overrightarrow{BC}=3x+6y-12\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?
\(\left|\vec{a}\right|=\left|\vec{b}\right|\) | |
\(\vec{a},\,\vec{b}\) cùng phương | |
\(\vec{a}\bot\vec{b}\) | |
\(\vec{a}\cdot\vec{b}=0\) |
Trong mặt phẳng \(Oxy\), cho vectơ \(\vec{a}=(3;-4)\). Đẳng thức nào sau đây đúng?
\(\left|\vec{a}\right|=5\) | |
\(\left|\vec{a}\right|=3\) | |
\(\left|\vec{a}\right|=4\) | |
\(\left|\vec{a}\right|=7\) |