Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
$m\geq2$ | |
$m\leq2$ | |
$m=2$ | |
$m>2$ |
Hàm số nào sau đây đạt giá trị nhỏ nhất tại $x=\dfrac{3}{4}$?
$y=4x^2-3x+1$ | |
$y=-x^2+\dfrac{3}{2}x+1$ | |
$y=-2x^2+3x+1$ | |
$y=x^2-\dfrac{3}{2}x+1$ |
Tìm giá trị lớn nhất của hàm số $y=4x-\sqrt{2}x^2$.
$\sqrt{2}$ | |
$2\sqrt{2}$ | |
$2$ | |
$4$ |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).
\(m\leq3\) | |
\(m\leq-3\) | |
\(m\leq5\) | |
\(m\leq-1\) |
Một chất điểm chuyển động theo phương trình \(S=-2t^3+18t^2+1\), trong đó \(t\) tính bằng giây và \(S\) tính bằng mét. Mất bao lâu kể từ lúc xuất phát để chất điểm đạt vận tốc lớn nhất?
\(5\) giây | |
\(6\) giây | |
\(3\) giây | |
\(1\) giây |
Tìm giá trị lớn nhất của hàm số \(f(x)=-x^4-3x^2+2020\) trên \(\mathbb{R}\).
\(\max\limits_{\mathbb{R}}f(x)=2020\) | |
\(\max\limits_{\mathbb{R}}f(x)=2021\) | |
\(\max\limits_{\mathbb{R}}f(x)=2019\) | |
\(\max\limits_{\mathbb{R}}f(x)=2018\) |
Hàm số \(y=x^4+2x^2-3\)
không có giá trị lớn nhất và giá trị nhỏ nhất | |
không có cực trị | |
có giá trị nhỏ nhất | |
có giá trị lớn nhất |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(y=x-1+\dfrac{4}{x-1}\) trên khoảng \((1;+\infty)\).
\(m=5\) | |
\(m=4\) | |
\(m=2\) | |
\(m=3\) |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
$3$ | |
$-1$ | |
$1$ | |
$2$ |
Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.
$\dfrac{8}{5}$ | |
$4-2\sqrt{3}$ | |
$0$ | |
$2\sqrt{3}-4$ |
Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là
$2\sqrt{3}$ | |
$\dfrac{114}{11}$ | |
$\sqrt{3}$ | |
$3$ |
Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.
$M+m=\dfrac{10}{3}$ | |
$M+m=\dfrac{16}{3}$ | |
$M+m=3$ | |
$M+m=5$ |
Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng
$-4$ | |
$-\dfrac{1}{2}$ | |
$-6$ | |
$1-4\sqrt{2}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
$2f(0)-1$ | |
$2f(-1)-4$ | |
$2f(1)$ | |
$2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
$f(2)+\dfrac{2}{3}$ | |
$f(-1)+\dfrac{2}{3}$ | |
$\dfrac{2}{3}$ | |
$f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.
Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
$x_0=-4$ | |
$x_0=-1$ | |
$x_0=3$ | |
$x_0=-3$ |