Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(2;1)\), \(\vec{b}=(3;4)\) và \(\vec{c}=(7;2)\). Tìm giá trị của \(k,\,h\) sao cho $$\vec{c}=k\vec{a}+h\vec{b}$$
\(\begin{cases}k=\dfrac{5}{2}\\ h=-\dfrac{13}{10}\end{cases}\) | |
\(\begin{cases}k=\dfrac{23}{5}\\ h=-\dfrac{51}{10}\end{cases}\) | |
\(\begin{cases}k=\dfrac{22}{5}\\ h=-\dfrac{3}{5}\end{cases}\) | |
\(\begin{cases}k=\dfrac{17}{5}\\ h=-\dfrac{1}{5}\end{cases}\) |
Cho vectơ \(\vec{a}=(1;-2)\). Với giá trị nào của \(y\) thì vectơ \(\vec{b}=(-3;y)\) vuông góc với \(\vec{a}\)?
\(-6\) | |
\(6\) | |
\(-\dfrac{3}{2}\) | |
\(3\) |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là
$m=-1$ và $n=\dfrac{4}{3}$ | |
$m=-1$ và $n=\dfrac{3}{4}$ | |
$m=1$ và $n=\dfrac{4}{3}$ | |
$m=-3$ và $n=4$ |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.
$m=\sqrt{6}$ | |
$m=-6$ | |
Không có giá trị nào của $m$ | |
$m=\pm\sqrt{6}$ |
Trong mặt phẳng $Oxy$, cho ba vectơ $\overrightarrow{x}=(2;3)$, $\overrightarrow{y}=(-2;0)$, $\overrightarrow{u}=(6;6)$. Tìm $m+n$ biết $\overrightarrow{u}=m\overrightarrow{x}+n\overrightarrow{y}$.
$3$ | |
$1$ | |
$2$ | |
$4$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(2;-1)$, $\overrightarrow{b}=(-3;4)$ và $\overrightarrow{c}=(-4;7)$. Cho hai số thực $m$, $n$ thỏa mãn $m\overrightarrow{a}+n\overrightarrow{b}=\overrightarrow{c}$. Tính $S=m^2+n^2$.
$S=5$ | |
$S=3$ | |
$S=4$ | |
$S=1$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{3}{2}$ | |
$m=\dfrac{3}{2}$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(2;-4)$, $\overrightarrow{a}=(-1;-2)$, $\overrightarrow{b}=(1;-3)$. Biết $\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}$. Tính $m-n$ được kết quả là
$5$ | |
$-2$ | |
$-5$ | |
$2$ |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
\(150^\circ\) | |
\(90^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=2\vec{i}-\vec{j}\) và \(\vec{v}=\vec{i}+m\vec{j}\). Tìm \(m\) để \(\vec{u},\,\vec{v}\) cùng phương.
\(m=-1\) | |
\(m=-\dfrac{1}{2}\) | |
\(m=\dfrac{1}{4}\) | |
\(m=2\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
\(m=-5\) | |
\(m=4\) | |
\(m=0\) | |
\(m=-1\) |
Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(m;2)\), \(\vec{b}=(-5;1)\) và \(\vec{c}=(m;7)\). Tìm giá trị của \(m\), biết rằng \(\vec{c}=2\vec{a}+3\vec{b}\).
\(m=-15\) | |
\(m=3\) | |
\(m=15\) | |
\(m=5\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(3;-2;m)\) và \(\vec{b}=(2;m;-1)\). Tìm giá trị của \(m\) để \(\vec{a}\) và \(\vec{b}\) vuông góc với nhau.
\(m=2\) | |
\(m=1\) | |
\(m=-2\) | |
\(m=-1\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).
\(a+b=1\) | |
\(a+b=-1\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
\(\cos A=\dfrac{2}{\sqrt{17}}\) | |
\(\cos A=\dfrac{1}{\sqrt{17}}\) | |
\(\cos A=-\dfrac{2}{\sqrt{17}}\) | |
\(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).
\(\dfrac{\sqrt{2}}{2}\) | |
\(-\dfrac{\sqrt{2}}{2}\) | |
\(-135^\circ\) | |
\(135^\circ\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
\(135^\circ\) | |
\(45^\circ\) | |
\(30^\circ\) | |
\(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?
\(\left|\vec{a}\right|=\left|\vec{b}\right|\) | |
\(\vec{a},\,\vec{b}\) cùng phương | |
\(\vec{a}\bot\vec{b}\) | |
\(\vec{a}\cdot\vec{b}=0\) |
Trong mặt phẳng \(Oxy\), cho vectơ \(\vec{a}=(3;-4)\). Đẳng thức nào sau đây đúng?
\(\left|\vec{a}\right|=5\) | |
\(\left|\vec{a}\right|=3\) | |
\(\left|\vec{a}\right|=4\) | |
\(\left|\vec{a}\right|=7\) |