Cho \(d\colon2x+y-3=0\). Phép vị tự tâm \(O\) tỉ số \(2\) biến đường thẳng \(d\) thành
\(2x+y+3=0\) | |
\(4x+2y-3=0\) | |
\(2x+y-6=0\) | |
\(4x+2y-5=0\) |
Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\colon2x+5y-1=0\). Ảnh của \(d\) qua phép vị tự tâm \(O\) tỉ số \(k=-2\) là đường thẳng có phương trình
\(5x+2y-2=0\) | |
\(-2x+5y+1=0\) | |
\(-2x-5y+3=0\) | |
\(2x+5y+2=0\) |
Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\colon2x+y-3=0\). Phép vị tự tâm \(O\) tỉ số \(k=2\) biến \(d\) thành đường thẳng có phương trình
\(2x+y+3=0\) | |
\(2x+y-6=0\) | |
\(4x-2y-3=0\) | |
\(4x+2y-5=0\) |
Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon2x+y-4=0$ và điểm $I(-1;2)$. Tìm ảnh $d'$ của $d$ qua phép vị tự tâm $I$ tỉ số $k=-2$.
$2x-y+4=0$ | |
$-2x+y+8=0$ | |
$2x+y+8=0$ | |
$2x+y+4=0$ |
Trong mặt phẳng $Oxy$, cho ba điểm $A(0;3)$, $B(2;1)$ và $C(-1;5)$. Phép vị tự tâm $A$ tỉ số $k$ biến điểm $B$ thành điểm $C$. Khi đó giá trị $k$ là
$k=-\dfrac{1}{2}$ | |
$k=-1$ | |
$k=\dfrac{1}{2}$ | |
$k=2$ |
Trong mặt phẳng $Oxy$, cho tam giác $PQR$ có $P(-3;2)$, $Q(1;1)$, $R(2;-4)$. Gọi $P',\,Q',\,R'$ lần lượt là ảnh của $P,\,Q,\,R$ qua phép vị tự tâm $O$ tỉ số $k=-\dfrac{1}{3}$. Khi đó tọa độ trọng tâm của tam giác $P'Q'R'$ là
$\left(\dfrac{1}{9};\dfrac{1}{3}\right)$ | |
$\left(0;\dfrac{1}{9}\right)$ | |
$\left(\dfrac{2}{3};-\dfrac{1}{3}\right)$ | |
$\left(\dfrac{2}{9};0\right)$ |
Trong mặt phẳng $Oxy$, tìm ảnh $A'$ của điểm $A(1;2)$ qua phép vị tự tâm $I(3;-1)$ tỉ số $k=2$.
$A'(3;4)$ | |
$A'(1;5)$ | |
$A'(-5;-1)$ | |
$A'(-1;5)$ |
Trong mặt phẳng $Oxy$, tìm ảnh $A'$ của điểm $A(1;-3)$ qua phép vị tự tâm $O$ tỉ số $-2$.
$A'(2;6)$ | |
$A'(1;3)$ | |
$A'(-2;6)$ | |
$A'(-2;-6)$ |
Cho hai đường thẳng cắt nhau $d$ và $d'$. Có bao nhiêu phép vị tự biến $d$ thành đường thẳng $d'$?
$0$ | |
$1$ | |
$2$ | |
Vô số |
Gọi \(N\) là ảnh của điểm \(M=\left(-6;1\right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay \(\mathrm{Q}_{\left(O,90^\circ\right)}\) và phép vị tự tâm \(O\) tỉ số \(k=2\). Tọa độ điểm \(N\) là
\(N=\left(-2;-12\right)\) | |
\(N=\left(2;12\right)\) | |
\(N=\left(-12;-2\right)\) | |
\(N=\left(12;2\right)\) |
Trong mặt phẳng \(Oxy\) cho đường tròn \((\mathscr{C})\colon(x-1)^2+(y-5)^2=4\) và điểm \(I(2;-3)\). Gọi \(\left(\mathscr{C}'\right)\) là ảnh của \((\mathscr{C})\) qua phép vị tự tâm \(I\) tỉ số \(k=-2\). Khi đó \(\left(\mathscr{C}'\right)\) có phương trình là
\((x-4)^2+(y+19)^2=16\) | |
\((x-6)^2+(y+9)^2=16\) | |
\((x+4)^2+(y-19)^2=16\) | |
\((x+6)^2+(y+9)^2=16\) |
Trong mặt phẳng \(Oxy\) cho ba điểm \(I(-2;-1)\), \(M(1;5)\) và \(M'(-1;1)\). Phép vị tự tâm \(I\) tỉ số \(k\) biến điểm \(M\) thành điểm \(M'\). Tìm tỉ số \(k\).
\(k=\dfrac{1}{3}\) | |
\(k=\dfrac{1}{4}\) | |
\(k=3\) | |
\(k=4\) |
Trong mặt phẳng \(Oxy\) cho hai điểm \(M(4;6)\) và \(M'(-3;5)\). Phép vị tự tâm \(I\) tỉ số \(k=\dfrac{1}{2}\) biến điểm \(M\) thành điểm \(M'\). Tìm tọa độ tâm vị tự \(I\).
\(I(-4;10)\) | |
\(I(1;1)\) | |
\(I(1;11)\) | |
\(I(-10;4)\) |
Trong mặt phẳng tọa độ \(Oxy\) cho phép vị tự \(V\) tỉ số \(k=2\) biến điểm \(A(1;-2)\) thành điểm \(A'(-5;1)\). Khi đó phép vị tự \(V\) đã cho biến điểm \(B(0;1)\) thành điểm \(B'\) có tọa độ là
\((0;2)\) | |
\((12;-5)\) | |
\((-7;7)\) | |
\((11;6)\) |
Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(1;2)\), \(B(-3;4)\) và \(I(1;1)\). Phép vị tự tâm \(I\) tỉ số \(k=-\dfrac{1}{3}\) biến điểm \(A\) thành điểm \(A'\), biến điểm \(B\) thành điểm \(B'\). Mệnh đề nào sau đây là đúng?
\(A'B'=AB\) | |
\(\overrightarrow{A'B'}=\left(\dfrac{4}{3};-\dfrac{2}{3}\right)\) | |
\(\overrightarrow{A'B'}=(-4;2)\) | |
\(A'B'=2\sqrt{5}\) |
Trong mặt phẳng \(Oxy\) cho phép vị tự tâm \(I(3;4)\) tỉ số \(k=2\) biến điểm \(A(1;2)\) thành điểm \(A'\) có tọa độ là
\((-1;0)\) | |
\((0;-2)\) | |
\((2;0)\) | |
\((5;6)\) |
Trong mặt phẳng \(Oxy\) cho phép vị tự tâm \(I(2;3)\) tỉ số \(k=-2\) biến điểm \(M(-7;2)\) thành điểm \(M'\) có tọa độ là
\((-10;2)\) | |
\((20;5)\) | |
\((18;2)\) | |
\((-10;5)\) |
Trong mặt phẳng \(Oxy\) cho đường tròn \((\mathscr{C})\colon x^2+(y-3)^2=4\). Tìm ảnh \(\left(\mathscr{C}'\right)\) của \((\mathscr{C})\) qua phép vị tự tâm \(O\) tỉ số \(k=-2\).
\(\left(\mathscr{C}'\right)\colon x^2+(y+6)^2=16\) | |
\(\left(\mathscr{C}'\right)\colon x^2+(y-6)^2=16\) | |
\(\left(\mathscr{C}'\right)\colon x^2+(y+6)^2=64\) | |
\(\left(\mathscr{C}'\right)\colon x^2+(y-6)^2=64\) |
Trong măt phẳng $Oxy$, cho đường thẳng $d$ có phương trình $3x+2y-6=0$. Ảnh của đường thẳng $d$ qua phép tịnh tiến theo $\overrightarrow{v}=(-1;3)$ là đường thẳng $d’$ có phương trình
$3x+2y-12=0$ | |
$2x+3y-3=0$ | |
$2x+3y+1=0$ | |
$3x+2y-9=0$ |
Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon3x-2y-1=0$. Ảnh của $d$ qua phép quay tâm $O$ góc $180^\circ$ có phương trình
$3x+2y+1=0$ | |
$-3x+2y-1=0$ | |
$3x+2y-1=0$ | |
$3x-2y-1=0$ |