Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(3;-2;m)\) và \(\vec{b}=(2;m;-1)\). Tìm giá trị của \(m\) để \(\vec{a}\) và \(\vec{b}\) vuông góc với nhau.
![]() | \(m=2\) |
![]() | \(m=1\) |
![]() | \(m=-2\) |
![]() | \(m=-1\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;6)\), \(B(x;-2)\) và \(C(2;y)\). Tính \(\overrightarrow{OA}\cdot\overrightarrow{BC}\) theo \(x\) và \(y\).
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+12\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=0\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=-3x+6y+18\) |
![]() | \(\overrightarrow{OA}\cdot\overrightarrow{BC}=3x+6y-12\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(-3;4)\), \(\vec{b}=(4;3)\). Kết luận nào sau đây sai?
![]() | \(\left|\vec{a}\right|=\left|\vec{b}\right|\) |
![]() | \(\vec{a},\,\vec{b}\) cùng phương |
![]() | \(\vec{a}\bot\vec{b}\) |
![]() | \(\vec{a}\cdot\vec{b}=0\) |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.
![]() | $m=\sqrt{6}$ |
![]() | $m=-6$ |
![]() | Không có giá trị nào của $m$ |
![]() | $m=\pm\sqrt{6}$ |
Trong mặt phẳng $Oxy$, cho ba vectơ $\overrightarrow{x}=(2;3)$, $\overrightarrow{y}=(-2;0)$, $\overrightarrow{u}=(6;6)$. Tìm $m+n$ biết $\overrightarrow{u}=m\overrightarrow{x}+n\overrightarrow{y}$.
![]() | $3$ |
![]() | $1$ |
![]() | $2$ |
![]() | $4$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(2;-1)$, $\overrightarrow{b}=(-3;4)$ và $\overrightarrow{c}=(-4;7)$. Cho hai số thực $m$, $n$ thỏa mãn $m\overrightarrow{a}+n\overrightarrow{b}=\overrightarrow{c}$. Tính $S=m^2+n^2$.
![]() | $S=5$ |
![]() | $S=3$ |
![]() | $S=4$ |
![]() | $S=1$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.
![]() | $m=-\dfrac{2}{3}$ |
![]() | $m=\dfrac{2}{3}$ |
![]() | $m=-\dfrac{3}{2}$ |
![]() | $m=\dfrac{3}{2}$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(2;-4)$, $\overrightarrow{a}=(-1;-2)$, $\overrightarrow{b}=(1;-3)$. Biết $\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}$. Tính $m-n$ được kết quả là
![]() | $5$ |
![]() | $-2$ |
![]() | $-5$ |
![]() | $2$ |
Độ dài của vectơ \(\vec{u}=(5;-12)\) bằng
![]() | \(-7\) |
![]() | \(13\) |
![]() | \(\pm13\) |
![]() | \(169\) |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
![]() | \(150^\circ\) |
![]() | \(90^\circ\) |
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=2\vec{i}-\vec{j}\) và \(\vec{v}=\vec{i}+m\vec{j}\). Tìm \(m\) để \(\vec{u},\,\vec{v}\) cùng phương.
![]() | \(m=-1\) |
![]() | \(m=-\dfrac{1}{2}\) |
![]() | \(m=\dfrac{1}{4}\) |
![]() | \(m=2\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
![]() | \(m=-5\) |
![]() | \(m=4\) |
![]() | \(m=0\) |
![]() | \(m=-1\) |
Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(2;1)\), \(\vec{b}=(3;4)\) và \(\vec{c}=(7;2)\). Tìm giá trị của \(k,\,h\) sao cho $$\vec{c}=k\vec{a}+h\vec{b}$$
![]() | \(\begin{cases}k=\dfrac{5}{2}\\ h=-\dfrac{13}{10}\end{cases}\) |
![]() | \(\begin{cases}k=\dfrac{23}{5}\\ h=-\dfrac{51}{10}\end{cases}\) |
![]() | \(\begin{cases}k=\dfrac{22}{5}\\ h=-\dfrac{3}{5}\end{cases}\) |
![]() | \(\begin{cases}k=\dfrac{17}{5}\\ h=-\dfrac{1}{5}\end{cases}\) |
Trong mặt phẳng \(Oxy\), cho các vectơ \(\vec{a}=(m;2)\), \(\vec{b}=(-5;1)\) và \(\vec{c}=(m;7)\). Tìm giá trị của \(m\), biết rằng \(\vec{c}=2\vec{a}+3\vec{b}\).
![]() | \(m=-15\) |
![]() | \(m=3\) |
![]() | \(m=15\) |
![]() | \(m=5\) |
Đường thẳng \(d\) có một vectơ pháp tuyến là \(\vec{n}=(-2;-5)\). Đường thẳng \(\Delta\) vuông góc với \(d\) có một vectơ chỉ phương là
![]() | \(\vec{a}=(5;-2)\) |
![]() | \(\vec{n}=(-5;2)\) |
![]() | \(\vec{v}=(2;5)\) |
![]() | \(\vec{m}=(2;-5)\) |
Đường thẳng \(d\) có một vectơ chỉ phương là \(\vec{u}=(3;-4)\). Đường thẳng \(\Delta\) vuông góc với \(d\) có một vectơ pháp tuyến là
![]() | \(\vec{a}=(4;3)\) |
![]() | \(\vec{n}=(-4;-3)\) |
![]() | \(\vec{v}=(3;4)\) |
![]() | \(\vec{m}=(3;-4)\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
![]() | \(\cos A=\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=\dfrac{1}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).
![]() | \(\dfrac{\sqrt{2}}{2}\) |
![]() | \(-\dfrac{\sqrt{2}}{2}\) |
![]() | \(-135^\circ\) |
![]() | \(135^\circ\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
![]() | \(135^\circ\) |
![]() | \(45^\circ\) |
![]() | \(30^\circ\) |
![]() | \(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho vectơ \(\vec{a}=(3;-4)\). Đẳng thức nào sau đây đúng?
![]() | \(\left|\vec{a}\right|=5\) |
![]() | \(\left|\vec{a}\right|=3\) |
![]() | \(\left|\vec{a}\right|=4\) |
![]() | \(\left|\vec{a}\right|=7\) |