Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
![]() | $(2;+\infty)$ |
![]() | $\mathbb{R}\setminus\{2\}$ |
![]() | $\mathbb{R}$ |
![]() | $[2;+\infty)$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
![]() | $\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ |
![]() | $\{k2\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là
![]() | $\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$ |
![]() | $\mathscr{D}=(-1;+\infty)$ |
![]() | $\mathscr{D}=\mathbb{R}$ |
![]() | $\mathscr{D}=\mathbb{R}\setminus\{-1\}$ |
Tích phân $I=\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{4}}^{\tfrac{\pi}{3}}\dfrac{\mathrm{d}x}{\sin^2x}$ bằng
![]() | $\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$ |
![]() | $\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$ |
![]() | $-\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$ |
![]() | $-\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
![]() | $y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ |
![]() | $y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ |
![]() | $y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ |
![]() | $y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
![]() | $y'=-\dfrac{\cos2x}{\sin^22x}$ |
![]() | $y'=\dfrac{2\cos2x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
![]() | $-2$ |
![]() | $\dfrac{1}{2}$ |
![]() | $0$ |
![]() | $-\dfrac{1}{2}$ |
Tập xác định của hàm số \(y=\dfrac{\cot x}{\sin x-1}\) là
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2}\bigg|k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{3}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi\bigg|k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi;\,k\pi\bigg|k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sqrt{1-\sin x}}$$
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\varnothing\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{\cot x+3}{\cos x}$$
![]() | \(\mathscr{D}=\Bbb{R}\setminus \left\{\dfrac{k\pi}{2},\,k\in\Bbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\Bbb{R}\setminus\left\{k\pi,\,k\in \Bbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\Bbb{R}\setminus\left\{k2\pi,\,k\in \Bbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\Bbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi ,\,k\in\Bbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số $$y=\dfrac{1}{\sin x-\cos x}$$
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{-\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{1}{\sin\left(x-\dfrac{\pi}{2}\right)}\).
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\dfrac{\pi}{2},\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\pi+k2\pi,\,k\in\mathbb{Z}\right\}\) |
Tập xác định của hàm số \(y=\dfrac{1}{\sin2x}\) là
![]() | \(\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathbb{R}\setminus\left\{k2\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathbb{R}\setminus\left\{\dfrac{k\pi}{2},\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Tìm tập xác định \(\mathscr{D}\) của hàm số \(y=\dfrac{2020}{\sin x}\).
![]() | \(\mathscr{D}=\mathbb{R}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\{0\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{k\pi,\,k\in\mathbb{Z}\right\}\) |
![]() | \(\mathscr{D}=\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\right\}\) |
Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
![]() | \(2\) |
![]() | \(-2\) |
![]() | \(-4\) |
![]() | \(3\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
![]() | \(S=3\) |
![]() | \(S=4\) |
![]() | \(S=0\) |
![]() | \(S=1\) |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
![]() | $5$ |
![]() | $2$ |
![]() | $3$ |
![]() | $\dfrac{5}{2}$ |
Số giờ có ánh sáng mặt trời của một thành phố $X$ ở vĩ độ $40^{\circ}$ Bắc trong ngày thứ $t$ của năm 2015 được cho bởi hàm số $y=2\sin\left[\dfrac{\pi}{180}(t-70)\right]+13$ với $t\in\mathbb{Z}$ và $0< t\leq365$. Thành phố $X$ có đúng $11$ giờ có ánh sáng mặt trời vào ngày thứ bao nhiêu trong năm?
![]() | $300$ |
![]() | $70$ |
![]() | $180$ |
![]() | $340$ |
Tìm $m$ để phương trình $\dfrac{2\sin x+\cos x+1}{\sin x-2\cos x+3}=m$ có nghiệm.
![]() | $\dfrac{1}{2}\leq m\leq2$ |
![]() | $m\geq2$ |
![]() | $m\leq-\dfrac{1}{2}$ |
![]() | $-\dfrac{1}{2}\leq m\leq2$ |
Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là
![]() | $M=8;\,m=5$ |
![]() | $M=5;\,m=2$ |
![]() | $M=8;\,m=4$ |
![]() | $M=8;\,m=2$ |