Đồ thị của hàm số $y=f(x)$ có dạng như đường cong trong hình vẽ bên.
Gọi $M$ là giá trị lớn nhất, $m$ là giá trị nhỏ nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$. Tính $P=M-2m$.
$P=5$ | |
$P=3$ | |
$P=1$ | |
$P=4$ |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
$5$ | |
$2$ | |
$3$ | |
$\dfrac{5}{2}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
$2f(0)-1$ | |
$2f(-1)-4$ | |
$2f(1)$ | |
$2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
$f(2)+\dfrac{2}{3}$ | |
$f(-1)+\dfrac{2}{3}$ | |
$\dfrac{2}{3}$ | |
$f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.
Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
$x_0=-4$ | |
$x_0=-1$ | |
$x_0=3$ | |
$x_0=-3$ |
Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?
$\min\limits_{[-2;2]}h(x)=h(-2)$ | |
$\max\limits_{[0;4]}h(x)=h(0)$ | |
$\min\limits_{[-1;2]}h(x)=h(-1)$ | |
$h(2)< h(4)< h(0)$ |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm \(\max\limits_{[-2;4]}\left|f(x)\right|\).
\(\left|f(0)\right|\) | |
\(2\) | |
\(3\) | |
\(1\) |
Cho hàm số \(y=f(x)\) liên tục trên đoạn \([-1;3]\) và có đồ thị như hình vẽ. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \([-1;3]\). Giá trị của \(M-m\) bằng
\(0\) | |
\(1\) | |
\(4\) | |
\(5\) |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.
Khẳng định nào sau đây đúng?
$\max\limits_{[-1;3]}f(x)=f(0)$ | |
$\max\limits_{[-1;3]}f(x)=f(3)$ | |
$\max\limits_{[-1;3]}f(x)=f(-1)$ | |
$\max\limits_{[-1;3]}f(x)=f(2)$ |
Cho hai cây cột có chiều cao lần lượt là $6$m, $15$m và đặt cách nhau $20$m (như hình minh họa).
Một sợi dây dài được gắn vào đỉnh của mỗi cột và được đóng cọc xuống đất tại một điểm ở giữa hai cột. Chiều dài sợi dây được sử dụng ít nhất là
$30$m | |
$29$m | |
$31$m | |
$28$m |
Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:
Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng
$1$ | |
$4$ | |
$0$ | |
$5$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:
Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng
$15$ | |
$\dfrac{25}{3}$ | |
$\dfrac{19}{3}$ | |
$12$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Giá trị lớn nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$ bằng
$1$ | |
$3$ | |
$-1$ | |
$0$ |
Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là
$M=8;\,m=5$ | |
$M=5;\,m=2$ | |
$M=8;\,m=4$ | |
$M=8;\,m=2$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
$5$ | |
$4$ | |
$6$ | |
$7$ |
Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.
Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng
$f(0)$ | |
$f(-3)+6$ | |
$f(2)-4$ | |
$f(4)-8$ |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
\(9\) | |
\(10\) | |
Vô số | |
\(0\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Hàm số \(y=f(x)\) liên tục trên đoạn \([-1;3]\) và có bảng biến thiên như sau:
Gọi \(M\) là giá trị lớn nhất của hàm số \(y=f(x)\) trên đoạn \([-1;3]\). Khẳng định nào sau đây là khẳng định đúng?
\(M=f(0)\) | |
\(M=f(3)\) | |
\(M=f(2)\) | |
\(M=f(-1)\) |