Trong mặt phẳng $Oxy$, cho điểm $M(1;-3)$. Ảnh của điểm M qua phép tịnh tiến theo vectơ $\overrightarrow{v}=(1;-2)$ là
![]() | $M’(2;5)$ |
![]() | $M’(2;-5)$ |
![]() | $M’(0;-1)$ |
![]() | $M’(0;-5)$ |
Cho tam giác $ABC$ có $M,\,N,\,P$ lần lượt là trung điểm các cạnh $BC$, $CA$, $AB$. Phép tịnh tiến theo vectơ $\overrightarrow{v}=\dfrac{1}{2}\overrightarrow{BC}$ biến
![]() | điểm $P$ thành điểm $N$ |
![]() | điểm $N$ thành điểm $P$ |
![]() | điểm $M$ thành điểm $B$ |
![]() | điểm $M$ thành điểm $N$ |
Trong mặt phẳng tọa độ $Oxy$, cho vectơ $\overrightarrow{v}=(2;1)$ và điểm $A(4;5)$. Điểm $A$ là ảnh của điểm nào sau đây qua phép tịnh tiến $\mathrm{T}_{\overrightarrow{v}}$?
![]() | $I(2;4)$ |
![]() | $J(6;6)$ |
![]() | $K(1;-1)$ |
![]() | $L(-2;-4)$ |
Cho hình bình hành $ABCD$, gọi $M$ (khác $B$) là một điểm di động trên cạnh $AB$. Biết rằng phép tịnh tiến theo vectơ $\overrightarrow{BC}$ biến điểm $M$ thành điểm $M'$. Mệnh đề nào sau đây là đúng?
![]() | Điểm $M'$ trùng với điểm $M$ |
![]() | Điểm $M'$ là trung điểm cạnh $CD$ |
![]() | Điểm $M'$ nằm trên cạnh $BC$ |
![]() | Điểm $M'$ nằm trên cạnh $DC$ |
Cho lục giác đều $ABCDEF$ tâm $O$ (như hình).
Đặt $\overrightarrow{u}=\overrightarrow{OA}$. Qua phép tịnh tiến $\mathrm{T}_{\overrightarrow{u}}$ thì
![]() | điểm $B$ biến thành điểm $C$ |
![]() | điểm $C$ biến thành điểm $D$ |
![]() | điểm $D$ biến thành điểm $E$ |
![]() | điểm $E$ biến thành điểm $F$ |
Ảnh của điểm $M(-2;1)$ qua phép tịnh tiến theo vectơ $\overrightarrow{v}=(1;4)$ là điểm
![]() | $M'(1;5)$ |
![]() | $M'(-1;5)$ |
![]() | $M'(-3;-3)$ |
![]() | $M'(3;-3)$ |
Ảnh của điểm $M(0;1)$ qua phép tịnh tiến theo vectơ $\overrightarrow{u}=(1;2)$ là điểm nào sau đây?
![]() | $M'(2;3)$ |
![]() | $M'(1;3)$ |
![]() | $M'(1;1)$ |
![]() | $M'(-1;-1)$ |
Cho tam giác $ABC$ có $M,\,N,\,P$ lần lượt là trung điểm các cạnh $BC$, $CA$, $AB$.
Phép tịnh tiến theo vectơ $\overrightarrow{v}=\dfrac{1}{2}\overrightarrow{BC}$ biến
![]() | điểm $P$ thành điểm $N$ |
![]() | điểm $N$ thành điểm $P$ |
![]() | điểm $M$ thành điểm $B$ |
![]() | điểm $M$ thành điểm $N$ |
Trong mặt phẳng \(Oxy\) nếu một phép tịnh tiến biến điểm \(M(4;2)\) thành điểm \(M'(4;5)\) thì phép tịnh tiến đó biến điểm \(A(2;5)\) thành điểm nào sau đây?
![]() | \(E(5;2)\) |
![]() | \(F(1;6)\) |
![]() | \(G(2;8)\) |
![]() | \(H(2;5)\) |
Trong mặt phẳng \(Oxy\) cho điểm \(A(2;5)\). Hỏi \(A\) là ảnh của điểm nào trong các điểm sau qua phép tịnh tiến theo vectơ \(\overrightarrow{v}=(1;2)\)?
![]() | \(M(1;3)\) |
![]() | \(N(1;6)\) |
![]() | \(P(3;7)\) |
![]() | \(Q(2;4)\) |
Trong mặt phẳng \(Oxy\) cho vectơ \(\overrightarrow{v}=(-3;2)\) và điểm \(A(1;3)\). Ảnh của điểm \(A\) qua phép tịnh tiến theo vectơ \(\overrightarrow{v}\) là điểm nào sau đây?
![]() | \(M(-3;2)\) |
![]() | \(N(1;3)\) |
![]() | \(P(-2;5)\) |
![]() | \(Q(2;-5)\) |
Trong mặt phẳng \(Oxy\) cho điểm \(A(2;5)\). Phép tịnh tiến theo vectơ \(\overrightarrow{v}=(1;2)\) biến \(A\) thành điểm \(A'\) có tọa độ là
![]() | \((3;1)\) |
![]() | \((1;6)\) |
![]() | \((3;7)\) |
![]() | \((4;7)\) |
Trong mặt phẳng $Oxy$, cho đường tròn $\left(\mathscr{C}\right)\colon(x+3)^2+(y-1)^2=5$ và $\overrightarrow{v}=(2;1)$. Viết phương trình đường tròn $(\mathscr{C}’)$ là ảnh của $(\mathscr{C})$ qua phép tịnh tiến theo vectơ $\overrightarrow{v}$.
Trong mặt phẳng $Oxy$, phép quay tâm $O$ góc quay $-90^\circ$ biến $M(-3;5)$ thành điểm có tọa độ
![]() | $(-5;-3)$ |
![]() | $(5;-3)$ |
![]() | $(5;3)$ |
![]() | $(-5;3)$ |
Trong mặt phẳng $Oxy$, cho điểm $A(1;0)$. Ảnh của $A$ qua phép quay tâm $O$ góc quay $90^\circ$ là
![]() | $A’(0;-1)$ |
![]() | $A’(-1;0)$ |
![]() | $A’(0;1)$ |
![]() | $A’(1;1)$ |
Trong măt phẳng $Oxy$, cho đường thẳng $d$ có phương trình $3x+2y-6=0$. Ảnh của đường thẳng $d$ qua phép tịnh tiến theo $\overrightarrow{v}=(-1;3)$ là đường thẳng $d’$ có phương trình
![]() | $3x+2y-12=0$ |
![]() | $2x+3y-3=0$ |
![]() | $2x+3y+1=0$ |
![]() | $3x+2y-9=0$ |
Cho hình chữ nhật $MNPQ$. Tìm ảnh của điểm $Q$ qua phép tịnh biến theo vectơ $\overrightarrow{MN}$.
![]() | Điểm $M$ |
![]() | Điểm $N$ |
![]() | Điểm $Q$ |
![]() | Điểm $P$ |
Trong mặt phẳng $Oxy$, cho điểm $M'(x';y')$ là ảnh của điểm $M(x;y)$ qua phép tịnh tiến theo vectơ $\overrightarrow{v}=(a;b)$. Tìm mệnh đề đúng?
![]() | $\begin{cases}x'=x+b\\ y'=y+a\end{cases}$ |
![]() | $\begin{cases}x'=a-x\\ y'=b-y\end{cases}$ |
![]() | $\begin{cases}x'=x+a\\ y'=y+b\end{cases}$ |
![]() | $\begin{cases}x'=x-a\\ y'=y-b\end{cases}$ |
Trong mặt phẳng $Oxy$, điểm $M'(3;-2)$ là ảnh của điểm nào sau đây qua phép quay $Q_{(O,180^\circ)}$?
![]() | $M(3;2)$ |
![]() | $M(2;3)$ |
![]() | $M(-3;2)$ |
![]() | $M(-2;-3)$ |
Trong mặt phẳng $Oxy$, cho các điểm $I(3;1)$ và $J(-1;-1)$. Tìm ảnh của $J$ qua phép quay $\mathrm{Q}_{(I,-90^\circ)}$.
![]() | $J'(-3;3)$ |
![]() | $J'(1;-5)$ |
![]() | $J'(1;5)$ |
![]() | $J'(5;-3)$ |