Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).
Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
![]() | $\dfrac{\sqrt{3}}{3}a$ |
![]() | $\sqrt{2}a$ |
![]() | $\dfrac{2\sqrt{3}}{3}a$ |
![]() | $\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).
Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng
![]() | $60^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $90^{\circ}$ |
![]() | $45^{\circ}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.
Khẳng định nào sau đây là đúng?
![]() | $BC\perp(SAB)$ |
![]() | $BC\perp(SBD)$ |
![]() | $BC\perp(SCD)$ |
![]() | $BC\perp(SAC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$ là đường thẳng
![]() | Đi qua điểm $S$ và song song với $AD$ |
![]() | Đi qua điểm $S$ và song song với $AB$ |
![]() | Không tồn tại |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Phát biểu nào không đúng về giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$?
![]() | Song song với $CD$ |
![]() | Đi qua điểm $S$ |
![]() | Song song với $AB$ |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$
![]() | Không tồn tại |
![]() | Đi qua điểm $S$ |
![]() | Đi qua giao điểm $I$ của $AD$ và $BC$ |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho tứ diện $ABCD$ và điểm $M$ thuộc miền trong của tam giác $ACD$. Gọi $I,\,J$ lần lượt là hai điểm trên cạnh $BC$ và $BD$ sao cho $IJ$ không song song với $CD$. Gọi $H$ là giao điểm của $IJ$ với $CD$, $K$ là giao điểm của $MH$ với $AC$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(IJM)$ là
![]() | $KI$ |
![]() | $KJ$ |
![]() | $MI$ |
![]() | $MH$ |
Cho $4$ điểm không đồng phẳng $A,\,B,\,C,\,D$. Gọi $I,\,K$ lần lượt là trung điểm của $AD$ và $BC$. Giao tuyến của $(IBC)$ và $(KAD)$ là
![]() | $IK$ |
![]() | $BC$ |
![]() | $AK$ |
![]() | $DK$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là
![]() | $SD$ |
![]() | $SO$ ($O$ là tâm của hình bình hành $ABCD$) |
![]() | $SG$ ($G$ là trung điểm cạnh $AB$) |
![]() | $SF$ ($F$ là trung điểm cạnh $CD$) |
Cho tứ diện $ABCD$. Gọi $G$ là trọng tâm của tam giác $BCD$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(GAB)$ là
![]() | $AM$ ($M$ là trung điểm của $AB$) |
![]() | $AN$ ($N$ là trung điểm của $CD$) |
![]() | $AH$ ($H$ là hình chiếu của $B$ trên $CD$) |
![]() | $AK$ ($K$ là hình chiếu của $C$ trên $BD$) |
Cho hình chóp $S.ABCD$ có đáy là hình thang $ABCD$ ($AB\parallel CD$). Khẳng định nào sau đây sai?
![]() | $S.ABCD$ có $4$ mặt bên |
![]() | Giao tuyến của $(SAC)$ và $(SBD)$ là $SO$, với $O=AC\cap BD$ |
![]() | Giao tuyến của $(SAD)$ và $(SBC)$ là $SI$, với $I=AD\cap BC$ |
![]() | Giao tuyến của $(SAB)$ và $(SAD)$ là $BD$ |
Cho tứ diện \(ABCD\). Gọi \(M,\,K\) lần lượt là trung điểm của \(BC\) và \(AC\), \(N\) là điểm trên cạnh \(BD\) sao cho \(BN=2ND\). Giao điểm của \(MN\) và \((ACD)\) là
![]() | Giao điểm của \(MN\) với \(AD\) |
![]() | Giao điểm của \(MN\) với \(KD\) |
![]() | Giao điểm của \(MN\) với \(CD\) |
![]() | Không có |
Cho tứ diện \(ABCD\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(AD\) và \(BC\); \(G\) là trọng tâm tam giác \(BCD\).
Khi ấy giao điểm của đường thẳng \(MG\) và mặt phẳng \((ABC)\) là
![]() | Điểm \(C\) |
![]() | Điểm \(N\) |
![]() | Giao điểm của đường thẳng \(MG\) và đường thẳng \(BC\) |
![]() | Giao điểm của đường thẳng \(MG\) và đường thẳng \(AN\) |
Cho hình chóp $S.ABC$ có $SA$ vuông góc với mặt phẳng $(ABC)$, $SA=2a$, tam giác $ABC$ vuông tại $B$, $AB=a\sqrt{3}$ và $BC=a$. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ bằng
![]() | $90^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $45^{\circ}$ |
![]() | $60^{\circ}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
![]() | $60^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $45^\circ$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
![]() | $SI$ |
![]() | $SA$ |
![]() | $SB$ |
![]() | $SC$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
![]() | $AB\perp BC$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp(ABC)$ |
![]() | $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SCA}$ |
![]() | $\widehat{SCB}$ |
![]() | $\widehat{SAC}$ |
![]() | $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SBA}$ |
![]() | $\widehat{SBC}$ |
![]() | $\widehat{SAB}$ |
![]() | $\widehat{ASB}$ |