Ngân hàng bài tập

Bài tập tương tự

B

Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=2a$. Thể tích của khối tứ diện $SBCD$ là

$\dfrac{a^3}{3}$
$\dfrac{a^3}{4}$
$\dfrac{a^3}{6}$
$\dfrac{a^3}{8}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA$ vuông góc với mặt phẳng đáy và $SA=9a$. Thể tích khối chóp $S.ABCD$ bằng

$a^3$
$27a^3$
$9a^3$
$3a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$. Cạnh bên $SA$ vuông góc với mặt đáy và $SC=a\sqrt{5}$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABCD$.

$V=\dfrac{a^3\sqrt{3}}{3}$
$V=\dfrac{a^3\sqrt{3}}{6}$
$V=a^3\sqrt{3}$
$V=\dfrac{a^3\sqrt{15}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và cạnh bên $SB$ vuông góc với mặt phẳng đáy. Tính chiều cao $h$ của khối chóp, biết rằng thể tích $V=\dfrac{a^3\sqrt{2}}{3}$.

$h=a\sqrt{2}$
$h=3a\sqrt{2}$
$h=a\sqrt{3}$
$h=\dfrac{a\sqrt{2}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông với đường chéo $AC=a\sqrt{2}$, cạnh bên $SB$ vuông góc với mặt phẳng đáy và $SB=a\sqrt{2}$. Tính thể tích $V$ của khối chóp $S.ABCD$.

$V=\dfrac{a^3\sqrt{2}}{6}$
$V=\dfrac{a^3\sqrt{2}}{4}$
$V=a^3\sqrt{2}$
$V=\dfrac{a^3\sqrt{2}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, cạnh bên $SB$ vuông góc với mặt phẳng đáy và $SB=a\sqrt{2}$. Tính thể tích $V$ của khối chóp $S.ABCD$.

$V=\dfrac{a^3\sqrt{2}}{6}$
$V=\dfrac{a^3\sqrt{2}}{4}$
$V=a^3\sqrt{2}$
$V=\dfrac{a^3\sqrt{2}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=a\sqrt{6}$. Thể tích của khối chóp $S.ABCD$ bằng

$a^3\sqrt{6}$
$a^3\dfrac{\sqrt{6}}{3}$
$a^3\dfrac{\sqrt{6}}{6}$
$a^3\dfrac{\sqrt{6}}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho khối chóp $S.ABC$ có đáy là tam giác vuông cân tại $A$, $AB=2$, $SA$ vuông góc với đáy và $SA=3$ (tham khảo hình bên).

Thể tích khối chóp đã cho bằng

$12$
$2$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $B$, $AB=BC=1$, $AD=2$. Cạnh bên $SA=2$ và vuông góc với mặt đáy. Tính thể tích khối chóp $S.ABCD$.

$V=1$
$V=\dfrac{\sqrt{3}}{2}$
$V=\dfrac{1}{3}$
$V=2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cận tại $B$ và $BC=a$. Cạnh bên $SA=2a$ và vuông góc với mặt phẳng đáy. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=a^3$
$V=\dfrac{a^3\sqrt{3}}{2}$
$V=\dfrac{a^3}{3}$
$V=\dfrac{2a^3}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có chiều cao bằng $8$ và đáy $ABCD$ là hình vuông cạnh bằng $3$. Gọi $M$ là trung điểm của $SB$ và $N$ là điểm thuộc $SD$ sao cho $\overrightarrow{SN}=2\overrightarrow{ND}$. Thể tích khối tứ diện $ACMN$ bằng

$6$
$9$
$4$
$3$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).

Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3}{8}$
$\dfrac{3a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{a^3}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a\), \(BC=a\), \(SA\) vuông góc với mặt đáy và cạnh bên \(SC\) hợp với đáy một góc \(30^\circ\). Tính thể tích \(V\) của khối chóp theo \(a\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).

  1. Tính thể tích khối chóp
  2. Tính khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
3 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(SA=2a\) và vuông góc với mặt đáy. Gọi \(M,\,N\) lần lượt là hình chiếu vuông góc của \(A\) trên các đường thẳng \(SB\), \(SC\).

Tính thể tích của khối chóp \(A.BCNM\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:

  1. Thể tích của khối chóp
  2. Khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp tam giác $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $2a$ và $SA$ vuông góc với mặt phẳng $(ABC)$ (tham khảo hình vẽ).

Biết thể tích của khối chóp $S.ABC$ là $\dfrac{a^3\sqrt{3}}{2}$ và góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ là góc nhọn $\alpha$. Chọn phát biểu đúng.

$\alpha=60^{\circ}$
$\alpha=45^{\circ}$
$\alpha=30^{\circ}$
$\tan\alpha=\dfrac{\sqrt{3}}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp đều $S.ABCD$ có chiều cao bằng $a\sqrt{2}$ và độ dài cạnh bên bằng $a\sqrt{6}$. Tính thể tích khối chóp $S.ABCD$.

$\dfrac{8a^3\sqrt{2}}{3}$
$\dfrac{10a^3\sqrt{2}}{3}$
$\dfrac{8a^3\sqrt{3}}{3}$
$\dfrac{10a^3\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho khối chóp tứ giác đều có tất cả các cạnh bằng $2a$. Thể tích của khối chóp đã cho bằng

$\dfrac{4\sqrt{2}a^3}{3}$
$\dfrac{8a^3}{3}$
$\dfrac{8\sqrt{2}a^3}{3}$
$\dfrac{2\sqrt{2}a^3}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự