Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
$4$ | |
$2$ | |
$1$ | |
$3$ |
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là
$4$ | |
$3$ | |
$2$ | |
$1$ |
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là
$4$ | |
$3$ | |
$2$ | |
$1$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $f(x)=\dfrac{x+2}{x^2+mx+m}$ có đúng một tiệm cận đứng.
$m\in(0;4)$ | |
$m\in\{0;4\}$ | |
$m=0$ | |
$m\in\varnothing$ |
Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.
Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?
$\left(-1;0\right)$ | |
$\left(-2;-1\right)$ | |
$\left(1;2\right)$ | |
$\left(0;1\right)$ |
Cho hàm số \(y=\dfrac{ax-1}{bx+c}\) có đồ thị như hình trên. Tính giá trị biểu thức \(T=a+2b+3c\).
\(T=1\) | |
\(T=2\) | |
\(T=3\) | |
\(T=4\) |
Biết rằng đồ thị hàm số \(y=\dfrac{(m-2n-3)x+5}{x-m-n}\) nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng \(S=m^2+n^2-2\).
\(S=2\) | |
\(S=0\) | |
\(S=-1\) | |
\(S=1\) |
Biết rằng đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có đường tiệm cận đứng là \(x=2\) và đường tiệm cận ngang là \(y=3\). Tính giá trị của \(a+b\).
\(a+b=1\) | |
\(a+b=5\) | |
\(a+b=4\) | |
\(a+b=0\) |
Đồ thị hàm số nào dưới đây không có đường tiệm cận?
\(y=\dfrac{x}{x^2+1}\) | |
\(y=\dfrac{1}{x}\) | |
\(y=x^4-3x^2+2\) | |
\(y=\dfrac{2x+1}{2-x}\) |
Đồ thị hàm số nào sau đây có \(3\) đường tiệm cận?
\(y=\dfrac{1-2x}{1+x}\) | |
\(y=\dfrac{1}{4-x^2}\) | |
\(y=\dfrac{x+3}{5x-1}\) | |
\(y=\dfrac{x}{x^2-x+9}\) |
Đồ thị hàm số \(y=\dfrac{x^2+2x+3}{\sqrt{x^4-3x^2+2}}\) có bao nhiêu đường tiệm cận?
\(4\) | |
\(5\) | |
\(3\) | |
\(6\) |
Đồ thị hàm số \(y=\dfrac{\sqrt{x+1}}{x^2-1}\) có bao nhiêu đường tiệm cận?
\(3\) | |
\(1\) | |
\(2\) | |
\(0\) |
Đồ thị hàm số \(y=\dfrac{x+1}{\sqrt{x^2-1}}\) có bao nhiêu đường tiệm cận?
\(3\) | |
\(1\) | |
\(2\) | |
\(0\) |
Cho hàm số \(y=\dfrac{5x+5}{x^2-1}\). Gọi \(m\) là số tiệm cận đứng, \(n\) là số tiệm cận ngang của đồ thị hàm số đã cho. Tính \(S=m+n\).
\(S=2\) | |
\(S=3\) | |
\(S=1\) | |
\(S=4\) |
Đồ thị hàm số \(y=\dfrac{x^2+x-2}{x^2-3x+2}\) có tất cả bao nhiêu đường tiệm cận?
\(3\) | |
\(0\) | |
\(1\) | |
\(2\) |
Đồ thị hàm số \(y=\dfrac{4x+4}{x^2+2x+1}\) có tất cả bao nhiêu đường tiệm cận?
\(2\) | |
\(0\) | |
\(1\) | |
\(3\) |
Tìm số đường tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2-3x-4}{x^2-16}\).
\(1\) | |
\(2\) | |
\(0\) | |
\(3\) |
Đồ thị hàm số \(y=\dfrac{x^2-2x+3}{2x-4}\) có tiệm cận đứng là đường thẳng
\(y=1\) | |
\(x=1\) | |
\(x=2\) | |
\(x=-1\) |
Đồ thị của hàm số nào dưới đây có tiệm cận đứng?
\(y=\dfrac{\sqrt{1-x^2}+1}{2019}\) | |
\(y=\dfrac{x^2-1}{x-1}\) | |
\(y=\dfrac{x^2}{x^2+2018}\) | |
\(y=\dfrac{x}{x+12}\) |
Đồ thị của hàm số nào sau đây nhận đường thẳng \(x=2\) làm tiệm cận đứng?
\(y=\dfrac{1}{x+1}\) | |
\(y=\dfrac{5x}{2-x}\) | |
\(y=x-2+\dfrac{1}{x+1}\) | |
\(y=\dfrac{1}{x+2}\) |