Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\log_2x\) | |
\(y=\dfrac{x-1}{x+1}\) | |
\(y=3^x\) | |
\(y=x^4+2x^2+4\) |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=x^4-x^2$ | |
$y=x^3-x$ | |
$y=\dfrac{x-1}{x+2}$ | |
$y=x^3+x$ |
Hàm số nào dưới dây là hàm số đồng biến trên $\mathbb{R}$?
$y=\left(\sqrt{2}-1\right)^x$ | |
$y=\log_3x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ | |
$y=3^x$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=-x^3-x$ | |
$y=-x^4-x^2$ | |
$y=-x^3+x$ | |
$y=\dfrac{x+2}{x-1}$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=\dfrac{x+1}{x-2}$ | |
$y=x^2+2x$ | |
$y=x^3-x^2+x$ | |
$y=x^4-3x^2+2$ |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
\(y=\dfrac{x-1}{x}\) | |
\(y=2x^3\) | |
\(y=x^2+1\) | |
\(y=x^4+5\) |
Hàm số nào sau đây luôn tăng trên \(\mathbb{R}\)?
\(y=2019\) | |
\(y=x^4+x^2+1\) | |
\(y=x+\sin x\) | |
\(y=\dfrac{x-1}{x+1}\) |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\sqrt{x^2-3x+2}\) | |
\(y=x^4+x^2+1\) | |
\(y=\dfrac{x-1}{x+1}\) | |
\(y=x^3+5x+13\) |
Trong các hàm số dưới đây, hàm số nào nghịch biến trên \(\mathbb{R}\)?
\(y=\left(\dfrac{\pi}{3}\right)^x\) | |
\(y=\log_{\tfrac{\pi}{4}}\left(2x^2+1\right)\) | |
\(y=\left(\dfrac{2}{\mathrm{e}}\right)^x\) | |
\(y=\log_{\tfrac{2}{3}}x\) |
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
\(y=\log_{\tfrac{\pi}{4}}x\) | |
\(y=\log_\pi x\) | |
\(y=\left(\dfrac{\sqrt{5}}{2}\right)^x\) | |
\(y=2^x\) |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=\mathrm{e}^x$ | |
$y=\big(\sqrt{2}\big)^x$ | |
$y=\left(\dfrac{4}{3}\right)^x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ |
Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=\mathrm{e}^x$ | |
$y=\big(\sqrt{2}\big)^x$ | |
$y=\left(\dfrac{4}{3}\right)^x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên mỗi khoảng xác định của nó.
\(m<-3\) | |
\(m\leq-3\) | |
\(m\leq1\) | |
\(m<1\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.
\(m\leq1\) | |
\(m<1\) | |
\(m<-3\) | |
\(m\leq-3\) |
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
\(y=x^3-3x^2+4\) | |
\(y=-x^4-2x^2-3\) | |
\(y=x^3+3x\) | |
\(y=-x^3+3x^2-3x+2\) |
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
\(y=2019^x\) | |
\(y=3^{-x}\) | |
\(y=\left(\sqrt{\pi}\right)^x\) | |
\(y=\mathrm{e}^x\) |
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
\(y=\left(\dfrac{\mathrm{e}}{2}\right)^{-2x}\) | |
\(y=\left(\dfrac{3}{\mathrm{e}}\right)^x\) | |
\(y=\left(\dfrac{1}{3}\right)^{-x}\) | |
\(y=2019^x\) |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
$y=-x^3+3x+1$ | |
$y=\dfrac{x-1}{x+1}$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^4-x^2+1$ |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |