Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.
$\dfrac{8}{5}$ | |
$4-2\sqrt{3}$ | |
$0$ | |
$2\sqrt{3}-4$ |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=x+\dfrac{2}{x-1}\) trên khoảng \((1;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(y=x-1+\dfrac{4}{x-1}\) trên khoảng \((1;+\infty)\).
\(m=5\) | |
\(m=4\) | |
\(m=2\) | |
\(m=3\) |
Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{1}{16x}\) trên \((0;+\infty)\) là
\(\dfrac{1}{2}\) | |
\(\dfrac{1}{16}\) | |
\(2\) | |
\(16\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).
\(m=\dfrac{1}{2}\) | |
\(m=\dfrac{7}{2}\) | |
\(m=4\) | |
\(m=8\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).
\(m=2\) | |
\(m=4\) | |
\(m=6\) | |
\(m=8\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).
\(m=4\) | |
\(m=18\) | |
\(m=16\) | |
\(m=6\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).
\(m=0\) | |
\(m=1\) | |
\(m=2\) | |
\(m=\sqrt{2}\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=x+\dfrac{2}{x-1}\) trên khoảng \((1;+\infty)\).
\(m=1-2\sqrt{2}\) | |
\(m=1+2\sqrt{2}\) | |
\(m=1-\sqrt{2}\) | |
\(m=1+\sqrt{2}\) |
Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{8}{x}\) trên khoảng \((0;+\infty)\) là
\(2\) | |
\(4\sqrt{2}\) | |
\(6\) | |
\(\sqrt{2}\) |
Trên đoạn $[1;5]$, hàm số $y=x+\dfrac{4}{x}$ đạt giá trị nhỏ nhất tại điểm
$x=5$ | |
$x=2$ | |
$x=1$ | |
$x=4$ |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
$4\sqrt{2}$ | |
$2\sqrt{2}$ | |
$4$ | |
$\sqrt{2}$ |
Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).
\(m\leq3\) | |
\(m\leq-3\) | |
\(m\leq5\) | |
\(m\leq-1\) |
Giá trị nhỏ nhất của hàm số \(f(x)=x+\dfrac{1}{x-2}\) trên khoảng \((2;+\infty)\) là
\(2\) | |
\(3\) | |
\(4\) | |
\(2\sqrt{2}\) |
Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.
$\dfrac{8}{5}$ | |
$4-2\sqrt{3}$ | |
$0$ | |
$2\sqrt{3}-4$ |
Giá trị nhỏ nhất của hàm số $f(x)=x^2+\dfrac{2}{x}$ trên đoạn $\left[\dfrac{1}{2};3\right]$ bằng
$4$ | |
$2$ | |
$1$ | |
$3$ |